To find: The equation of the tangent line to the circle
Answer to Problem 111E
The equation of the tangent line to the circle
Explanation of Solution
Given information:
The equation of the circle is
Calculation:
Compare the given equation of circle with the general equation of circle
This gives the center of the circle is
As the tangent line at the point
Use the formula for slope of radius.
Both the lines are perpendicular. So,
So, the slope of the tangent line is
Use the general equation of the tangent line.
As the tangent line passes through the point
Now substitute
Therefore, The equation of the tangent line to the circle
Chapter 9 Solutions
Precalculus with Limits: A Graphing Approach
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning