Chemistry In Focus
7th Edition
ISBN: 9781337399692
Author: Tro, Nivaldo J.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 3SC
Interpretation Introduction
Interpretation:
The term which is represented by the label of a washing machine, which says that it uses
Concept introduction:
Power is defines as the capacity to do some work.
The power that arises by utilizing the chemical or physical resources for providing heat and light or carrying out various processes is known as energy.
The law of conservation of energy states that energy can neither be created nor be destroyed, it can only be converted from one form to other forms.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A company pays the electric company at a rate of $0.18 per kilowatt-hour for their power. The factory uses three ventilator fans to keep the workers safe from dust. Each fan has a 1 horsepower motor. The company runs the fans continuously 24/7. How much is the company’s energy cost per month (30 days) to operate the ventilation system?
Create a flowchart showing the energy transformations needed to generate electricity from each of the following power sources.
Match each position on the heating curve to its description.
.
Most people find waterbeds uncomfortable unless the water temperature is maintained at about 85 °F. Unless it is heated, a waterbed that contains 892 L of water cools from 85 °F to 72 °F in 24 hours. Estimate the amount of electrical energy required over 24 hours, in kWh, to keep the bed from cooling. Note that 1 kilowatt-hour (kWh) = 3.6 ×× 106 J, and assume that the density of water is 1.0 g/mL (independent of temperature). What other assumptions did you make? How did they affect your calculated result (i.e., were they likely to yield “positive” or “negative” errors)?
Chapter 9 Solutions
Chemistry In Focus
Ch. 9 - Conversion of Energy Units The complete combustion...Ch. 9 - Calculating Energy Use in Kilowatt-Hours What is...Ch. 9 - Prob. 9.3YTCh. 9 - Enthalpy of Reaction How much energy in...Ch. 9 - Prob. 9.5YTCh. 9 - Prob. 1SCCh. 9 - The second law of thermodynamics is sometimes...Ch. 9 - Prob. 3SCCh. 9 - Prob. 4SCCh. 9 - When two solutions are mixed in a beaker, a...
Ch. 9 - Prob. 1ECh. 9 - From a molecular standpoint, explain how thermal...Ch. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Explain the first law of thermodynamics and its...Ch. 9 - What is entropy? Why is entropy important?Ch. 9 - Explain the second law of thermodynamics and its...Ch. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Define each of the following terms: a. heat b....Ch. 9 - Prob. 12ECh. 9 - What happens to the temperature of the...Ch. 9 - Prob. 14ECh. 9 - Prob. 15ECh. 9 - Prob. 16ECh. 9 - Prob. 17ECh. 9 - Prob. 18ECh. 9 - Prob. 19ECh. 9 - What are the environmental problems associated...Ch. 9 - Prob. 21ECh. 9 - Prob. 22ECh. 9 - What is the major cause of acid rain?Ch. 9 - Explain how acid rain is formed and its effects on...Ch. 9 - Prob. 25ECh. 9 - Prob. 26ECh. 9 - Prob. 27ECh. 9 - Prob. 28ECh. 9 - Prob. 29ECh. 9 - Which fossil fuel is the worst offender when it...Ch. 9 - Prob. 31ECh. 9 - Prob. 32ECh. 9 - Prob. 33ECh. 9 - Prob. 34ECh. 9 - Assume that electricity costs 15 cents per...Ch. 9 - Prob. 36ECh. 9 - Prob. 37ECh. 9 - Prob. 38ECh. 9 - The coldest temperature ever measured in the...Ch. 9 - The warmest temperature ever measured in the...Ch. 9 - Chemical Reactions and Energy Calculate the amount...Ch. 9 - Prob. 42ECh. 9 - Prob. 43ECh. 9 - Prob. 44ECh. 9 - Prob. 45ECh. 9 - Prob. 46ECh. 9 - Prob. 47ECh. 9 - Prob. 48ECh. 9 - Calculate the amount of carbon dioxide (in kg)...Ch. 9 - Prob. 50ECh. 9 - The second law of thermodynamics has been called...Ch. 9 - You are camping and contemplating placing some hot...Ch. 9 - Prob. 56ECh. 9 - Prob. 57ECh. 9 - Prob. 58E
Knowledge Booster
Similar questions
- Most people find waterbeds uncomfortable unless the water temperature is maintained at about 85 F. Unless it is heated, a waterbed that contains 892 L of water cools from 85 F to 72 F in 24 hours. Estimate the amount of electrical energy required over 24 hours, in kWh, to keep the bed from cooling. Note that 1 kilowatt-hour (kWh) = 3.6106 J, and assume that the density of water is 1.0 g/mL (independent of temperature). What other assumptions did you make? How did they affect your calculated result (i.e., were they likely to yield positive or negative errors)?arrow_forward9.16 According to Figure 9.2, the total energy supply in the United States in 2016 was 111.261015 Btu. Express this value in joules and in calories. FIGURE 9.2 Energy production and consumption (in quadrillion Btu) in the United States during the year 2016. The discussion in the text explains how to read this complex figure, which contains an enormous amount of information about the energy economy. Data come from the Department of Energy and do not always add up exactly as expected due to rounding and other issues.arrow_forwardA piece of chocolate cake contains about 400 calories. A nutritional calorie is equal to 1000 calories (thermochemical calories), which is equal to 4.184 kJ. How many 8-in-high steps must a 180-lb man climb to expend the 400 Cal from the piece of cake? See Exercise 28 for the formula for potential energy.arrow_forward
- Calculating Energy Use in Kilowatt-Hours What is the yearly cost of operating a 100-W television for 2 hours per day, assuming the cost of electricity is 15 cents per kilowatt-hour?arrow_forwardAssume that electricity costs 15 cents per kilowatt- hour. Calculate the monthly cost of operating each of the following: a 100 W light bulb, 5 h/day a 600 W refrigerator, 24 h/day a 12,000 W electric range, 1 h/day a 1000 W toaster, 10 min/dayarrow_forwardDefine the terms renewable and nonrenewable as applied to energy resources. Which of the following energy resources are renewable: solar energy, coal, natural gas, geothermal energy, wind power?arrow_forward
- 9.71 In recent years, the notion of a “smart grid” has emerged. Do a web search and research the smart grid concept. How would the smart grid differ from the traditional grid?arrow_forwardWhich is the least expensive source of energy in kilojoules per dollar: a box of breakfast cereal that weighs 32 ounces and costs $4.23, or a liter of isooctane (density, 0.69 19 g/mL) that costs $0.45? Compare the nutritional value of the cereal with the heat produced by combustion of the isooctane under standard conditions. A 1.0-ounce serving of the cereal provides 130 Calories.arrow_forwardIs the Sun exothermic or endothermic? Is it any less exothermic or endothermic in the winter, as opposed to the summer?arrow_forward
- A 45-g aluminum spoon (specific heat 0.88 J/g C) at 24 C is placed in 180 mL (180 g) of coffee at 85 C and the temperature of the two become equal. (a) What is the final temperature when the two become equal? Assume that coffee has the same specific heat as water. (b) The first time a student solved this problem she got an answer of 88 C. Explain why this is clearly an incorrect answer.arrow_forwardDuring a recent winter month in Sheboygan, Wisconsin, it was necessary to obtain 3500 kWh of heat provided by a natural gas furnace with 89% efficiency to keep a small house warm (the efficiency of a gas furnace is the percent of the heat produced by combustion that is transferred into the house). (a) Assume that natural gas is pure methane and determine the volume of natural gas in cubic feet that was required to heat the house. The average temperature of the natural gas was 56 F; at this temperature and a pressure of 1 atm, natural gas has a density of 0.68 1 g/L. (b) How many gallons of LPG (liquefied petroleum gas) would be required to replace the natural gas used? Assume the LPG is liquid propane [ C3H8 : density, 0.5318 g/mL; enthalpy of combustion, 2219 Id/mo for the formation of CO2(g) and H2O(l) ] and the furnace used to burn the LPG has the same efficiency as the gas furnace. (c) What mass of carbon dioxide is produced by combustion of the methane used to heat the house? (d) What mass of water is produced by combustion of the methane used to heat the house? (e) What volume of air is required to provide the oxygen for the combustion of the methane used to heat the house? Air contains 23% oxygen by mass. The average density of air during the month was 1.22 g/L. (f) How many kilowatt—hours ( 1kWh=3.6106 J) of electricity would be required to provide the heat necessary to heat the house? Note electricity is 100% efficient in producing heat inside a house. (g) Although electricity is 100% efficient in producing heat inside a house, production and distribution of electricity is not 100% efficient. The efficiency of production and distribution of electricity produced in a coal-fired power plant is about 40%. A certain type of coal provides 2.26 kWh per pound upon combustion. What mass of this coal in kilograms will be required to produce the electrical energy necessary to heat the house if the efficiency of generation and distribution is 40%?arrow_forwardThe best solar panels currently available are about 15% efficient in converting sunlight to electricity. A typical home will use about 40. kWh of electricity per day (1 kWh = 1 kilowatt hour; 1kW = 1000 J/s). Assuming 8.0 hours of useful sunlight per day, calculate the minimum solar panel surface area necessary to provide all of a typical homes electricity. (See Exercise 124 for the energy rate supplied by the sun.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College Div
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning