College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 10CQ
In the early days of rocketry, some people claimed that rockets could-n’t fly in outer space as there was no air for the rockets to push against. Suppose you were an early investigator in the field of rocketry and met someone who made this argument. How would you convince the person that rockets could travel in space?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the escape speed for a rocket to leave Earth's Moon. The radius of Moon is 1740km1740km and its mass is 7.36×1022kg7.36×1022kg.
An extrasolar planet has mass 1.27E+25 kg and radius 67400000_m. What is the escape speed for this
planet?
11440_m/s
12230_m/s
5014_m/s
А.
D.
16190_m/s
В.
Е.
1973_m/s
С.
F.
9206 m/s
One way astrophysicists have identifi ed “extrasolar” planets orbiting distant stars is by observing redshifts or blueshifts in the star’s spectrum due to the fact that he star and planet each revolve around their common center of mass. Consider a star the size of our sun (mass 1.99 x 1030 kg), with a planet the size of Jupiter(1.90 x 1027 kg) in a circular orbit of radius 7.79 x 1011 m and a period of 11.9 years. (a) Find the speed of the star revolving around the system’s center of mass. (b) Assume that Earth is in the planet’s orbital plane, so that at one point in its orbit the star is moving directly toward Earth, and at the opposite point it moves directly away from Earth. How much is 550-nm light redshifted and blueshifted at those two extreme points?
Chapter 9 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 9 - Rank in order, from largest to smallest, the...Ch. 9 - Starting from rest, object 1 is subject to a 12 N...Ch. 9 - A 0.2 kg plastic cart and a 20 kg lead cart can...Ch. 9 - Two pucks, of mass m and 4m, lie on a frictionless...Ch. 9 - Prob. 5CQCh. 9 - Two students stand at rest, facing each other on...Ch. 9 - A 2 kg cart rolling to the right at 3 m/s runs...Ch. 9 - Automobiles are designed with crumple zones...Ch. 9 - You probably know that it feels better to catch a...Ch. 9 - In the early days of rocketry, some people claimed...
Ch. 9 - Two ice skaters, Megan and Jason, push off from...Ch. 9 - Suppose a rubber ball and a steel ball collide....Ch. 9 - While standing still on a basketball court, you...Ch. 9 - To win a prize at the county fair, youre trying to...Ch. 9 - Rank in order, from largest to smallest, the...Ch. 9 - Monica stands at the edge of a circular platform...Ch. 9 - If the earth warms significantly, the polar ice...Ch. 9 - The disks shown in Figure Qg.181 have equal mass....Ch. 9 - Curling is a sport played with 20 kg stones that...Ch. 9 - Two balls are hung from cords. The first ball, of...Ch. 9 - Figure Q9.21 shows two blocks sliding on a...Ch. 9 - Two friends are sitting in a stationary canoe. At...Ch. 9 - Two blocks, with masses m1, = 2.5 kg and m2 = 14...Ch. 9 - A small puck is sliding to the right with...Ch. 9 - A red ball, initially at rest, is simultaneously...Ch. 9 - A 4.0-m-diameter playground merry-go-round, with a...Ch. 9 - A disk rotates freely on a vertical axis with an...Ch. 9 - At what speed do a bicycle and its rider, with a...Ch. 9 - A 57 g tennis ball is served at 45 m/s. If the...Ch. 9 - A student throws a 120 g snowball at 7.5 m/s at...Ch. 9 - In Figure P9.4, what value of Fmax gives an...Ch. 9 - A sled and rider, gliding over horizontal,...Ch. 9 - Use the impulse-momentum theorem to find how long...Ch. 9 - a. A 2.0 kg object is moving to the right with a...Ch. 9 - A 60 g tennis ball with an initial speed of 32 m/s...Ch. 9 - A child is sliding on a sled at 1.5 m/s to the...Ch. 9 - An ice hockey puck slides along the ice at 12 m/s....Ch. 9 - As part of a safety investigation, two 1400 kg...Ch. 9 - In a Little League baseball game, the 145 g ball...Ch. 9 - A small, 100 g cart is moving at 1.20 m/s on a...Ch. 9 - A man standing on very slick ice fires a rifle...Ch. 9 - A 2.7 kg block of wood sits on a frictionless...Ch. 9 - A strong man is compressing a lightweight spring...Ch. 9 - A 10,000 kg railroad car is rolling at 2.00 m/s...Ch. 9 - A 5000 kg t rain car, with its top open, is...Ch. 9 - A 55 kg hunter, standing on frictionless ice,...Ch. 9 - A 9.5 kg dog takes a nap in a canoe and wakes up...Ch. 9 - Prob. 21PCh. 9 - A 71 kg baseball player jumps straight up to catch...Ch. 9 - A kid at the junior high cafeteria wants to propel...Ch. 9 - The parking brake on a 2000 kg Cadillac has...Ch. 9 - A 2.0 kg block slides along a frictionless surface...Ch. 9 - Erica (36 kg) and Danny (47 kg) are bouncing on a...Ch. 9 - At a wild-west show, a marksman fires a bullet at...Ch. 9 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 9 - Two particles collide and bounce apart. Figure...Ch. 9 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 9 - A firecracker in a coconut blows the coconut into...Ch. 9 - What is the angular momentum of the moon around...Ch. 9 - A little girl is going on the merry-go-round for...Ch. 9 - What is the angular momentum about the axle of the...Ch. 9 - What is the angular momentum about the axle of the...Ch. 9 - Divers change their body position in midair while...Ch. 9 - Prob. 37PCh. 9 - What is the impulse on a 3.0 kg particle that...Ch. 9 - A 600 g air-track glider collides with a spring at...Ch. 9 - Far in space, where gravity is negligible, a 425...Ch. 9 - A 200 g ball is dropped from a height of 2.0 m,...Ch. 9 - A 200 g ball is dropped from a height of 2.0 m and...Ch. 9 - Figure P9.43 is a graph of the force exerted by...Ch. 9 - A sled slides along a horizontal surface for which...Ch. 9 - A 140 g baseball is moving horizontally to the...Ch. 9 - Squids rely on jet propulsion, a versatile...Ch. 9 - The flowers of the bunchberry plant open with...Ch. 9 - a. With what speed are pollen grains ejected from...Ch. 9 - A tennis player swings her 1000 g racket with a...Ch. 9 - A 20 g ball of clay is thrown horizontally at 30...Ch. 9 - Dan is gliding on his skateboard at 4.0 m/s. He...Ch. 9 - James and Sarah stand on a stationary cart with...Ch. 9 - Ethan, whose mass is 80 kg, stands at one end of a...Ch. 9 - A small cart rolls freely along the floor. As it...Ch. 9 - Three identical train cars, coupled together, are...Ch. 9 - A 110 kg linebacker running at 2.0 m/s and an 82...Ch. 9 - Most geologists believe that the dinosaurs became...Ch. 9 - Two ice skaters, with masses of 75 kg and 55 kg,...Ch. 9 - Prob. 59GPCh. 9 - One billiard ball is shot east at 2.00 m/s. A...Ch. 9 - A 10 g bullet is fired into a 10 kg wood block...Ch. 9 - A typical raindrop is much more massive than a...Ch. 9 - A 15 g bullet is fired at 610 m/s into a 4.0 kg...Ch. 9 - Two 500 g blocks of wood are 2.0 m apart on a...Ch. 9 - A 495 kg cannon fires a 10.0 kg cannonball with a...Ch. 9 - Laura, whose mass is 35 kg, jumps horizontally off...Ch. 9 - A spaceship of mass 2.0 106 kg is cruising at a...Ch. 9 - At the county fair, Chris throws a 0.15 kg...Ch. 9 - Figure P9.70 shows a collision between three balls...Ch. 9 - The carbon isotope 14C is used for carbon dating...Ch. 9 - A 1.0-m-long massless rod is pivoted at one end...Ch. 9 - A 200 g puck revolves in a circle on a...Ch. 9 - Figure P9.74 shows a 100 g puck revolving at 100...Ch. 9 - A 2.0 kg, 20-cm-diameter turntable rotates at 100...Ch. 9 - Joey, from Example 9.10, stands at rest at the...Ch. 9 - A 3.0-m-diameter merry-go-round with a mass of 250...Ch. 9 - Disk A, with a mass of 2.0 kg and a radius of 40...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Acetobacter is necessary for only one of the steps of vitamin C manufacture. The easiest way to accomplish this...
Microbiology: An Introduction
Flower position, stem length, and seed shape are three characters that Mendel studied. Each is controlled by an...
Campbell Biology (11th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
What are the four types of tissues, and what are their characteristics?
Human Anatomy & Physiology (2nd Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For years, space travel was believed to be impossible because there was nothing that rockets could push off of in space in order to provide the propulsion necessary to accelerate. This inability of a rocket to provide propulsion in space is because ... a. space is void of air so the rockets have nothing to push off of. b. gravity is absent in space. c. space is void of air and so there is no air resistance in space. d. ... nonsense! Rockets do accelerate in space and have been able to do so for a long time.arrow_forwardA planet is discovered orbiting a distant star. The mass of theplanet is 40 times the mass of the Earth, and its radius is one-tenththe Earth’s radius. If a 2400-kg rocket has an escape velocity v onthe Earth, how does the escape speed of a 1200-kg rocket on theplanet compare with v?arrow_forwardPlease check if the first question s correct. The answers for the answer that I put is two. And how do I do the other question? If you can do the first questions then please do the second. But I am have trouble with botharrow_forward
- Goku's birthplace (in Dragon Ball Z universe) is planet Vegeta which has a really high surface gravity, that is why he can jump really high on Earth because the gravity on the said planet is really wimpy and cannot hold him down. Up to what height can Goku jump on planet Vegeta if he can jump on earth up to a height of 4764.24m and the planet Vegeta has 457.50% stronger gravity? Assume that Goku launched himself on the same initial velocity for both planets. What is his weight on planet Vegeta if his mass is 96.41kg?arrow_forwardA group of Loyola students decided to depart from Earth after graduation to find work on Mars. Before building a shuttle, they conducted careful calculations. A model for the velocity of the shuttle, from liftoff at t = 0 s until the solid rocket boosters were jettisoned at t = 84.8 s, is given by ?(?)=0.001111333?^3−0.085745?^2+30.69?+9.71 (in feet per second). Using this model, estimate the global maximum value =?and global minimum value =?arrow_forwardA rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s-1. If 20% of its initial energy is lost due to martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it ? Mass of mars = 6.4×1023 kg; radius of mars = 3395 km; G = 6.67×10-11 N m2 kg-2.arrow_forward
- What is the velocity of Jupiter if an object on the equator of Jupiter would travel approximately 280,000 miles in about 10 hours?arrow_forwardLet’s imagine that you have an idea for an experiment to fly on NASA’s “Vomit Comet.” (What’s special about this plane? It flies in parabolic paths (aka freefall) which result in near weightlessness. This means that you can ignore the effects of gravity when plan your experiment.) You want to mimic the orbital motion of the planets but by using electrostatic force rather than gravitational. And, instead of a planet, you will be orbiting a droplet of water that is 0.5mm in radius and has an deficit of 1.5 x 106 electrons. The droplet is to orbit around a small (1cm radius) sphere. If you want the droplet to move with an orbital radius of 14cm and period of one minute, what should the charge be on the central sphere? BTW The density of water is 997 kg/m3.arrow_forwardTitan is the largest moon of Saturn, and the only moon in the solar system known to have a substantial atmosphere.Its radius is easily measured to be 2570km. Since it doesn't have a satellite itself it's not obvious to us how we coulddetermine its mass. Suppose an astronaut of mass 60kg visits and finds her weight to be 81N. What is Titan's mass?arrow_forward
- Neglecting Earth's rotation, show that the energy needed to launch a satellite of mass m into circular orbit at altitude h above Earth's surface is: RE + 2h 2(RE +h) GMEM RE How much energy is required to launch a 10,000 kg satellite into a 200 km altitude circular orbit around the Earth?arrow_forwardYou are trapped on an earth-like planet with a mass of 5.00×1024 kg and a radius of 4000 km. You were able to build a cannon capable of launching a human. What velocity will you need to escape the planet? (We can simplify the Gravitational Constant G to 6.7x10-11 Nm2/kg)arrow_forwardThere are three end states for stars that run out of fuel. When stars run out of fuel, gravitational collapse occurs. The three end states are: White drawfs(low mass), Neutron stars(mid-mass), and Black holes(high mass). Lets do a problem on a Neutron star. Neutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. Suppose that the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 10.0 km. Determine the greatest possible angular speed (omega) the neutron star can have so, that the an object with a mass of 1 kg, at the its surface on the equator, is to be just held in orbit by the gravitational force. Mass of Sun = 1.99 x 10^30 kg. rad/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY