A tennis player swings her 1000 g racket with a speed of 10 m/s. She hits a 60 g tennis ball that was approaching her at a speed of 20 m/s. The ball rebounds at 40 m/s.
a. How fast is her racket moving immediately after the impact? You can ignore the interaction of the racket with her hand for the brief duration of the collision.
b. If the tennis ball and racket are in contact for 10 ms, what is the average force that the racket exerts on the ball?
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Microbiology with Diseases by Body System (5th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Introductory Chemistry (6th Edition)
Microbiology: An Introduction
Cosmic Perspective Fundamentals
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- Sven hits a baseball (m = 0.15 kg). He applies an average force of 50.0 N. The ball had an initial velocity of 35.0 m/s to the right and a final velocity of 40.0 m/s to the left as viewed by a fan in the stands. a. What is the impulse delivered by Svens bat to the baseball? b. How long is his bat in contact with the ball?arrow_forwardProblems 44 and 45 are paired. C A model rocket is shot straight up. As it reaches the highest point in its trajectory, it explodes in midair into three pieces with velocities indicated by the arrows in Figure P10.44, as viewed from directly above the explosion. Rank the mass of each piece in order from smallest to largest and justify your answer. FIGURE P10.44 Problems 44 and 45.arrow_forwardIn a laboratory, a cart collides with a wall and bounces back. Figure P11.10 shows a graph of the force exerted by the wall versus time. a. Find the impulse exerted by the wall on the cart. b. What is the average force exerted by the wall on the cart? c. If the cart has a mass of 0.448 kg, what is its change in velocity? d. Make a sketch of the situation. Include a coordinate system and explain the significance of the signs in parts (a) through (c). FIGURE P11.10arrow_forward
- (a) At what speed would a 2.00104 -kg airplane have to fly to have a momentum of 1.60109kgm/s (the same as the ship's momentum in the problem above)? (b) What is the plane's momentum when it is taking off at a speed of 60.0 m/s? (c) If the ship is an aircraft carrier that launches these airplanes with a catapult, discuss the implications of your answer to (b) as it relates to recoil effects of the catapult on the ship.arrow_forwardA crate of mass M is initially at rest on a frictionless, level table. A small block of mass m (m M) moves toward the crate as shown in Figure P10.31. Later, the block and crate are stuck together and are moving with some final speed. The momentum of the blockcrate system is the same both before and after the collision. Is the magnitude of the change in momentum of the crate greater than, less than, or equal to the magnitude of the change in the momentum of the block? Explain. FIGURE P10.31arrow_forwardA model rocket is shot straight up and explodes at the top of its trajectory into three pieces as viewed from above and shown in Figure P10.44. The masses of the three pieces are mA = 100.0 g, mB = 20.0 g, and mC = 30.0 g. Immediately after the explosion, piece A is traveling at 1.50 m/s, and piece B is traveling at 7.00 m/s in a direction 30 below the negative x axis as shown. What is the velocity of piece C? FIGURE P10.44 Problems 44 and 45. 45. We can use the conservation of momentum (Eq. 10.9). The total initial momentum is zero, so the sum of all the final momenta should be zero. mAvAf+mBvBf+mCvCf=0 This velocities for A and B can be expressed as vectors. vAf=1.50jm/svBf=(7.00im/s)cos30(7.00jm/s)sin30=(6.06i3.50j)m/s We can now solve the momentum equation. (100.0g)(1.50jm/s)+(20.0g)(6.06i3.50j)m/s+(30.0g)vCf=0vCf=(4.04i2.67j)m/s The velocity of piece C is down and to the right as expected.arrow_forward
- A ball of mass 50.0 g is dropped from a height of 10.0 m. It rebounds after losing 75% of its kinetic energy during the collision process. If the collision with the ground took 0.010 s, find the magnitude of the impulse experienced by the ball.arrow_forwardTwo pucks in a laboratory are placed on an air table. Puck 1 has twice the mass of puck 2. They are pushed toward each other and strike in a head-on collision. Initially, puck 2 is twice as fast as puck 1. a. What is the total momentum before the collision? b. What is the center-of-mass velocity before the collision? c. If the pucks are initially 2.70 m apart, how far did puck 1 move before the collision?arrow_forwardN A bomb explodes into three pieces A, B, and C of equal mass. Piece A flies with a speed of 40.0 m/s, and piece B with a speed of 30.0 m/s at an angle of 90° relative to the direction of A as shown in Figure P11.57. Determine the speed of piece C and the direction of its velocity relative to the direction of piece A.arrow_forward
- One object (m1 = 0.200 kg) is moving to the right with a speed of 2.00 m/s when it is struck from behind by another object (m2 = 0.300 kg) that is moving to the right at 6.00 m/s. If friction is negligible and the collision between these objects is elastic, find the final velocity of each.arrow_forwardA submarine with a mass of 6.26 106 kg contains a torpedo with a mass of 354 kg. The submarine fires the torpedo at an angle of 25 with respect to the horizontal as shown in Figure P10.42. a. If the submarine and the torpedo were initially at rest and the torpedo left the submarine with a speed of 89.2 m/s, what is the recoil speed of the submarine? b. What is the direction of recoil of the submarine? FIGURE P10.42arrow_forwardA soccer player runs up behind a 0.450-kg soccer ball traveling at 3.20 m/s and kicks it in the same direction as it is moving, increasing its speed to 12.8 m/s. (a) What is the change in the magnitude of the balls momentum? (b) What magnitude impulse did the soccer player deliver to the ball? (c) What magnitude impulse would be required to kick the ball in the opposite direction at 12.8 m/s, instead? (See Section 6.1.)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning