Concept explainers
Interpretation: Whetherthe normal melting point of substance X would be less than or greater than or equal to
Concept introduction
Freezing point: Freezing point is defined as the temperature at which liquid into solid.
Boiling point: Boiling point is temperature at which the liquid into gas.
Elevation of boiling point: Elevation of boiling point of a liquid is occurrence that boiling point of a liquid would be greater when another substance is added to it. Resulting, the boiling point becomes higher than the pure solvent.
Depression of freezing point: Depression of freezing point is reducing in freezing point of a solvent when added non volatile solute. Volatile substance means easily vaporized at room temperature and non volatile means does not easily evaporate at room temperature.
Trending nowThis is a popular solution!
Chapter 9 Solutions
Chemistry: An Atoms First Approach
- 8.51 Suppose that three unknown pure substances are liquids at room temperature. You determine that the boiling point of substance A is 53°C, that of substance B is 117°C, and that of substance C is 77°C. Based on this information, rank the three substances in order of their vapor pressures at room temperature.arrow_forwardA pure substance X has the following properties: Mp=90C, increasing slightly as pressure increases; normal bp=120C; liquid vp=65mm Hg at 100C, 20 mm Hg at the triple point. (a) Draw a phase diagram for X. (b) Label solid, liquid, and vapor regions of the diagram. (c) What changes occur if, at a constant pressure of 100 mm Hg, the temperature is raised from 100C to 150C?arrow_forwardExplain why 15 g of steam at 100C melts more ice than 15 g of liquid water at 100C.arrow_forward
- Consider the following data for xenon: Triple point: 121C, 280 torr Normal melting point: 112C Normal boiling point: 107C Which is more dense, Xe(s) or Xe(l)? How do the melting point and boiling point of xenon depend on pressure?arrow_forwardIntermolecular Forces The following picture represents atoms of hypothetical, nonmetallic, monatomic elements A, B, and C in a container at a temperature of 4 K (the piston maintains the pressure at 1 atm). None of these elements reacts with the others. a What is the state (solid, liquid, or gas) of each of the elements represented in the container? b Rank the elements in the container from greatest to least, in terms of intermolecular interactions. Explain your answer. c What type(s) of intermolecular attractions are present in each of these elements? d Explain which element has the greatest atomic mass. e One of the elements in the container has a normal boiling point of 2 K. Which element would that be (A, B, or C)? How do you know? f One of the elements has a melting point of 50 K. Which element would that be (A, B, or C)? Why? g The remaining element (the one you have yet to choose) has a normal boiling point of 25 K. Identify the element. Could this element have a freezing point of 7 K? Explain. h If you started heating the sample to 20 K, explain what you would observe with regard to the container and its contents during the heating. i Describe the container and its contents at 20 K. Describe (include a drawing) how the container and its contents look at 20 K. j Now you increase the temperature of the container to 30 K. Describe (include a drawing) how the container and its contents look at 30 K. Be sure to note any changes in going from 20 K to 30 K. k Finally, you heat the container to 60 K. Describe (include a drawing) how the container and its contents look at this temperature. Be sure to note any changes in going from 30K to 60karrow_forwardKrypton, Kr, has a triple point at 169C and 133 mmHg and a critical point at 63C and 54 atm. The density of the solid is 2.8 g/cm3, and the density of the liquid is 2.4 g/cm3. Sketch a rough phase diagram of krypton. Circle the correct word in each of the following sentences (and explain your answers). a Solid krypton at 130 mmHg (melts, sublimes without melting) when the temperature is raised. b Solid krypton at 760 mmHg (melts, sublimes without melting) when the temperature is raised.arrow_forward
- Diethyl ether (CH3CH2OCH2CH3) was one of the first chemicals used as an anesthetic. At 34.6C, diethyl ether has a vapor pressure of 760. torr, and at 17.9C, it has a vapor pressure of 400. torr. What is the H of vaporization for diethyl ether?arrow_forwardThe molar heat of fusion of sodium metal is 2.60 kJ/mol, whereas its heat of vaporization is 97.0 kJ/mol. a. Why is the heat of vaporization so much larger than the heat of fusion? b. What quantity of heat would be needed to melt 1.00 g sodium at its normal melting point? c. What quantity of heat would be needed to vaporize 1.00 g sodium at its normal boiling point? d. What quantity of heat would be evolved if 1.00 g sodium vapor condensed at its normal boiling point?arrow_forwardExplain why evaporation leads to cooling of the liquid.arrow_forward
- A 1.50-g sample of methanol (CH3OH) is placed in an evacuated 1.00-L container at 30 C. (a) Calculate the pressure in the container if all of the methanol is vaporized. (Assume the ideal gas law, PV = nRT.) (b) The vapor pressure of methanol at 30 C is 158 torr. What mass of methanol actually evaporates? Is liquid in equilibrium with vapor in the vessel?arrow_forwardThe following data are the equilibrium vapor pressure of limonene, C10H16, at various temperatures. (Limonene is used as a scent in commercial products.) (a) Plot these data as ln P versus 1/T so that you have a graph resembling the one in Figure 11.13. (b) At what temperature does the liquid have an equilibrium vapor pressure of 250 mm Hg? At what temperature is it 650 mm Hg? (c) What is the normal boiling point of limonene? (d) Calculate the molar enthalpy of vaporization for limonene using the Clausius-Clapeyron equation.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning