Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.3, Problem 8.4QQ
You are traveling along a freeway at 65 mi/h. Your car has kinetic energy. You suddenly skid to a stop because of congestion in traffic. Where is the kinetic energy your car once had? (a) It is all in internal energy in the road. (b) It is all in internal energy in the tires. (c) Some of it has transformed to internal energy and some of it transferred away by mechanical waves. (d) It is all transferred away from your car by various mechanisms.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The internal energy of a 5-kg suitcase starts at 150 kJ. The suitcase is
mangled as it travels through the baggage handling equipment at the
airport. During the process of travelling through the baggage-handling
equipment, 10 kJ of work is done on the suitcase, and 8 kJ of heat is lost
from the suitcase. What is the internal energy of the suitcase at the end of
the process, in kJ? Neglect any change in kinetic or potential energy of the
suitcase. Assume that the mass of the suitcase is unchanged.
O 152 kJ
O 30 kJ
It is impossible to answer this question from the information provided.
O It is possible to answer the question, but the correct answer is not among the
ones listed.
148 kJ
168 kJ
Problem 12: When water flows through river rapids or over a waterfall, it experiences a decrease in height and thus a decrease in gravitational potential energy. Some of this energy goes into producing noise and eroding rock, but much of the energy goes into heating the water. A river flows over a waterfall of height h = 41 m. Assume all the available gravitational energy is converted into internal energy of the water. There is no change in the kinetic energy, because the flow speed of the river is the same above and below the waterfall.
Part (a) Enter an expression for the change in temperature of the water, in terms of the height of the waterfall, h, the specific heat of water, c, and the acceleration due to gravity, g.
Part (b) Calculate the change in temperature, in degrees Celsius, of the river water in this problem. The specific heat of water is 4.19×103 J/(kg⋅°C).
Assuming that the animal is at rest, its top speed is 32.7 meters per second (m/s).
A cheetah's top speed can be calculated in terms of net work (in J).
A food Calorie is equal to 4186 J. What is the cheetah's maximum net work calorie requirement? The amount calculated here is only a fraction of the energy that must be produced by the cheetah's body due to inefficiencies in converting chemical energy to mechanical energy.
Chapter 8 Solutions
Physics for Scientists and Engineers
Ch. 8.1 - Consider a block sliding over a horizontal surface...Ch. 8.2 - A rock of mass m is dropped to the ground from a...Ch. 8.2 - Three identical balls are thrown from the top of a...Ch. 8.3 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - Prob. 1PCh. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - Prob. 6P
Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - A smooth circular hoop with a radius of 0.500 m is...Ch. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - Prob. 13PCh. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - You have spent a long day skiing and are tired....Ch. 8 - The electric motor of a model train accelerates...Ch. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - Make an order-of-magnitude estimate of the power a...Ch. 8 - There is a 5K event coming up in your town. While...Ch. 8 - For saving energy, bicycling and walking are far...Ch. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A block of mass m = 200 g is released from rest at...Ch. 8 - Make an order-of-magnitude estimate of your power...Ch. 8 - Prob. 25APCh. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - Why is the following situation impossible? A...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Heedless of danger, a child leaps onto a pile of...Ch. 8 - Review. Why is the following situation impossible?...Ch. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - More than 2 300 years ago, the Greek teacher...Ch. 8 - Review. As a prank, someone has balanced a pumpkin...Ch. 8 - Review. Why is the following situation impossible?...Ch. 8 - An airplane of mass 1.50 104 kg is in level...Ch. 8 - A pendulum, comprising a light string of length L...Ch. 8 - A ball whirls around in a vertical circle at the...Ch. 8 - You are working in the distribution center of a...Ch. 8 - Prob. 43APCh. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Review. A uniform board of length L is sliding...Ch. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - What If? Consider the roller coaster described in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A crate of mass 10.0 kg is pulled up a rough incline with an initial speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20.0 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.00 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crateincline system owing to friction. (c) How much work is done by the 100-N force on the crate? (d) What is the change in kinetic energy of the crate? (e) What is the speed of the crate after being pulled 5.00 m?arrow_forward(a) What is the efficiency of an out-of-condition professor who does 2.10105J of useful work while metabolizing 500 kcal of food energy? (b) How many food calories would a well-conditioned athlete metabolize in doing the same work with an efficiency of 20%?arrow_forward(a) Calculate the energy in kJ used by a 55.0-kg woman who does 50 deep knee bends in which her center of mass is lowered and raised 0.400 m. (She does work in both directions.) You may assume her efficiency is 20%. (b) What is the average power consumption rate in watts if she does this in 3.00 min?arrow_forward
- A student has the idea that the total work done on an object is equal to its final kinetic energy. Is this idea true always, sometimes, or never? Ii it is sometimes true, under what circumstances? If it is always or never true, explain why.arrow_forward(a) How long will the energy in a 1470kJ (350kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficiency of 20.0% (such as in leisurely climbing stairs)? (b) Does the time found in part (a) imply that it is easy to consume more food energy than you can reasonably expect to work off with exercise?arrow_forward(a) Calculate the work done on a 1500-kg elevator car by its cable to lift it 40.0 m at constant speed, assuming friction averages 100 N. (b) What is the work done on the lift by the gravitational force in this process? (c) What is the total work done on the lift?arrow_forward
- (a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h? (b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction? (c) What is the average force of friction if the hill has a slope 2.5° above the horizontal?arrow_forwardA ball of clay falls freely to the hard floor. It does not bounce noticeably, and it very quickly comes to rest. What, then, has happened to the energy the ball had while it was falling? (a) It has been used up in producing the downward motion. (b) It has been transformed back into potential energy. (c) It has been transferred into the ball by heat. (d) It is in the ball and floor (and walls) as energy of invisible molecular motion. (e) Most of it went into sound.arrow_forwardIn Chapter 7, the work-kinetic energy theorem, W = K, was introduced. This equation states that work done on a system appears as a change in kinetic energy. It is a special-case equation, valid if there are no changes in any other type of energy such as potential or internal. Give two or three examples in which work is done on a system but the change in energy of the system is not a change in kinetic energy.arrow_forward
- (a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s? (b) Discuss how the larger energies needed for the movement of larger animals would relate to metabolic rates.arrow_forward(a) How long can you rapidly climb stairs (116/min) on the 93.0 kcal of energy in a 10.0-g pat of butter? (b) How many flights is this if each flight has 16 stairs?arrow_forward(a) How long can you play tennis on the 800 kJ (about 200 kcal) of energy in a candy bar? (b) Does this seem like a long time? Discuss why exercise is necessary but may not be sufficient to cause a person to lose weight.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY