Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.2, Problem 38P
The coefficient of static friction between the drum and brake bar is, μs = 0.4. If the moment M=35 N·m, determine the smallest force P that needs to be applied to the brake bar in order to prevent the drum from rotating. Also determine the corresponding horizontal and vertical components of reaction at pin O. Neglect the weight and thickness bar. The drum has a mass of 25 kg.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The coefficient of static friction between the drum
300 mm
-700 mm
and brake bar is H = 0-4. If the moment
-125 mm
M = 35 N-m, determine the smallest force P that
S00 mm
needs to be applied to the brake bar in order to
prevent the drum from rotating. Also determine the
corresponding horizontal and vertical components of
reaction at pin 0. Neglect the weight and thickness of the brake bar. The drum has a mass of
25Kg.
Question 3:
The coefficients of static and kinetic friction between the drum and brake bar are ls= 0.4 and Hx= 0.3,
respectively. If M= 50 N.m and P= 85 N. determine the horizontal and vertical components of reaction at
the pin O (shown in Fig. 3). Neglect the weight and thickness of the brake. The drum has a mass of 25 kg.
300 mm
-700 mm-
B
-125 mm
500 mm
M
P
A
Fig. 3. Brake system
4. The mine car and its
contents have a total mass of
6000 kg and a centre of
gravity at G. If the coefficient
of static friction
10 kN
between the wheels and the
0.9 m
•G
tracks is u = 0.4 when the
wheels are locked, find the
normal force acting on the
front wheels at B and the rear
0.15 m
0.6 m -
1.5 m
wheels at A when the brakes
at both A and B are locked.
Does the car move?
[Ans. NA = 16.5 kN, Ng =42.3
kN, the car does not move]
%3D
lyp
Chapter 8 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 8.2 - P81. Determine the friction force at the surface...Ch. 8.2 - P82. Determine M to cause impending motion of the...Ch. 8.2 - P83. Determine the force P to move block B.Ch. 8.2 - P84. Determine the force P needed to cause...Ch. 8.2 - F81. Determine the friction developed between the...Ch. 8.2 - F82. Determine the minimum force P to prevent the...Ch. 8.2 - Prob. 3FPCh. 8.2 - F84. If the coefficient of static friction at...Ch. 8.2 - F85. Determine the maximum force P that can be...Ch. 8.2 - F86. Determine the minimum coefficient of static...
Ch. 8.2 - F87. Blocks A, B, and C have weights of 50 N, 25...Ch. 8.2 - F88. If the coefficient of static friction at all...Ch. 8.2 - Prob. 9FPCh. 8.2 - Determine the maximum force P the connection can...Ch. 8.2 - The tractor exerts a towing force T=400 lb....Ch. 8.2 - The mine car and its contents have a total mass of...Ch. 8.2 - Prob. 4PCh. 8.2 - The automobile has a mass of 2 Mg and center of...Ch. 8.2 - The automobile has a mass of 2 Mg and canter of...Ch. 8.2 - The block brake consists of a pin-connected lever...Ch. 8.2 - The block brake consists of a pin-connected lever...Ch. 8.2 - Prob. 9PCh. 8.2 - Determine the angle at which the applied force P...Ch. 8.2 - Determine the maximum weight W the man can lift...Ch. 8.2 - Prob. 12PCh. 8.2 - Prob. 13PCh. 8.2 - The car has a mass of 1.6 Mg and center of mass at...Ch. 8.2 - The log has a coefficient of state friction of, s...Ch. 8.2 - Prob. 16PCh. 8.2 - The 180-Ib man climbs up the ladder and stops at...Ch. 8.2 - The spool of wire having a weight of 300 Ib rests...Ch. 8.2 - The spool of wire having a weight of 300 Ib rests...Ch. 8.2 - Prob. 20PCh. 8.2 - A man attempts to support a stack of books...Ch. 8.2 - The tongs are used to lift the 150-kg crate, whose...Ch. 8.2 - The beam is supported by a pin at A and a roller...Ch. 8.2 - The uniform thin pole has a weight of 30 Ib and a...Ch. 8.2 - The uniform pole has a weight of 30 Ib and a...Ch. 8.2 - The block brake is used to stop the wheel from...Ch. 8.2 - Solve Prob. 8-26 if the couple moment M0 is...Ch. 8.2 - A worker walks up the sloped roof that is defined...Ch. 8.2 - The friction pawl is pinned at A and rests against...Ch. 8.2 - Two blocks A and B have a weight of 10 Ib and 6...Ch. 8.2 - Two blocks A and B have a weight of 10 Ib and 6...Ch. 8.2 - Determine the smallest force P that must be...Ch. 8.2 - The man having a weight of 200 Ib pushes...Ch. 8.2 - The uniform hoop of weight W is subjected to the...Ch. 8.2 - Determine the maximum horizontal force P that can...Ch. 8.2 - Determine the minimum force P needed to push the...Ch. 8.2 - The coefficients of static and kinetic friction...Ch. 8.2 - The coefficient of static friction between the...Ch. 8.2 - Determine the smallest coefficient of static...Ch. 8.2 - If =30, determine the minimum coefficient of...Ch. 8.2 - Prob. 41PCh. 8.2 - Prob. 42PCh. 8.2 - Investigate whether the equilibrium can be...Ch. 8.2 - Prob. 44PCh. 8.2 - The beam AB has a negligible mass and thickness...Ch. 8.2 - Prob. 46PCh. 8.2 - Crates A and B weigh 200 Ib and 150 Ib,...Ch. 8.2 - Prob. 48PCh. 8.2 - The uniform crate has a mass of 150 kg. If the...Ch. 8.2 - Prob. 50PCh. 8.2 - Prob. 51PCh. 8.2 - Prob. 52PCh. 8.2 - Determine the smallest couple moment that can be...Ch. 8.2 - Prob. 54PCh. 8.2 - Prob. 55PCh. 8.2 - The disk has a weight W and lies on a plane that...Ch. 8.2 - The man has a weight of 200 lb, and the...Ch. 8.2 - Prob. 1CPCh. 8.2 - Prob. 4CPCh. 8.2 - Prob. 5CPCh. 8.4 - Determine the largest angle that will cause the...Ch. 8.4 - Prob. 59PCh. 8.4 - The wedge is used to level the member. Determine...Ch. 8.4 - The two blocks used in a measuring device have...Ch. 8.4 - If P=250 N, determine the required minimum...Ch. 8.4 - Determine the minimum applied force P required to...Ch. 8.4 - Prob. 64PCh. 8.4 - Prob. 65PCh. 8.4 - Prob. 66PCh. 8.4 - Prob. 67PCh. 8.4 - Prob. 68PCh. 8.4 - Prob. 69PCh. 8.4 - Prob. 70PCh. 8.4 - Prob. 71PCh. 8.4 - Prob. 72PCh. 8.4 - Prob. 73PCh. 8.4 - Prob. 74PCh. 8.4 - The shaft has a square-threaded screw with a lead...Ch. 8.4 - Prob. 76PCh. 8.4 - Prob. 77PCh. 8.4 - Prob. 78PCh. 8.4 - Prob. 79PCh. 8.4 - Prob. 80PCh. 8.4 - Prob. 81PCh. 8.4 - Determine the horizontal force P that must be...Ch. 8.5 - A cylinder having a mass of 250 kg is to be...Ch. 8.5 - Prob. 84PCh. 8.5 - A 180-lb farmer tries to restrain the cow from...Ch. 8.5 - The 100-lb boy at A is suspended from the cable...Ch. 8.5 - Prob. 87PCh. 8.5 - Prob. 88PCh. 8.5 - A cable is attached to the 20-kg plate B, passes...Ch. 8.5 - Prob. 90PCh. 8.5 - Prob. 91PCh. 8.5 - Determine the force P that must be applied to the...Ch. 8.5 - Prob. 93PCh. 8.5 - Prob. 94PCh. 8.5 - Prob. 95PCh. 8.5 - Determine the maximum and the minimum values of...Ch. 8.5 - Prob. 97PCh. 8.5 - Prob. 98PCh. 8.5 - Prob. 99PCh. 8.5 - Blocks A and B have a mass of 7 kg and 10 kg,...Ch. 8.5 - The uniform bar AB is supported by a rope that...Ch. 8.5 - Prob. 102PCh. 8.5 - Prob. 103PCh. 8.5 - Prob. 104PCh. 8.5 - A 10-kg cylinder D, which is attached to a small...Ch. 8.5 - Prob. 106PCh. 8.8 - The collar bearing uniformly supports an axial...Ch. 8.8 - The collar bearing uniformly supports an axial...Ch. 8.8 - The floor-polishing machine rotates at a constant...Ch. 8.8 - Prob. 110PCh. 8.8 - Prob. 111PCh. 8.8 - Prob. 113PCh. 8.8 - Prob. 114PCh. 8.8 - Prob. 115PCh. 8.8 - Prob. 116PCh. 8.8 - The collar fits loosely around a fixed shaft that...Ch. 8.8 - Prob. 118PCh. 8.8 - Prob. 119PCh. 8.8 - Prob. 120PCh. 8.8 - Solve Prob. 8-120 if the force P is applied...Ch. 8.8 - Prob. 122PCh. 8.8 - Prob. 123PCh. 8.8 - The uniform disk fits loosely over a fixed shaft...Ch. 8.8 - Prob. 125PCh. 8.8 - The bell crank fits loosely into a 0.5-in-diameter...Ch. 8.8 - The bell crank fits loosely into a 0.5-in-diameter...Ch. 8.8 - The vehicle has a weight of 2600 lb and center of...Ch. 8.8 - Prob. 129PCh. 8.8 - The handcart has wheels with a diameter of 6 in....Ch. 8.8 - Prob. 131PCh. 8.8 - Prob. 132PCh. 8.8 - R81. The uniform 20-lb ladder rests on the rough...Ch. 8.8 - R82. The uniform 60-kg crate C rests uniformly on...Ch. 8.8 - R83. A 35-kg disk rests on an inclined surface for...Ch. 8.8 - Prob. 4RPCh. 8.8 - Prob. 5RPCh. 8.8 - Prob. 6RPCh. 8.8 - Prob. 7RPCh. 8.8 - The hand cart has wheels with a diameter of 80 mm....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine the horizontal force P to start the 400-N wedge moving to the right. The angle of friction for all contact surfaces is o = 20°. WA = 2000 N WB = 400 N 15°arrow_forwardQ1: The tractor has a weight of 4500 lb with center of gravity at G. The driving traction is developed at the rear wheels B, while the front wheels at A are free to roll. If the Q2: The mine car and its contents have a total mass of 9 Mg and a center of gravity at G. If the coefficient of static friction between the wheels and the tracks is u, = 0.4 when the wheels are locked, find the normal force acting on the coefficient of static friction between the wheels at B and the ground is u, = 0.5, determine if it is possible to pull at P = 1350 lb without causing the wheels at B to slip or the front wheels at A to lift off the ground. front wheels at B and the rear wheels at A when the brakes at both A and B are locked. Does the car move? 10 kN 0.9 m G 0.15 m 3.5 ft 1.25 ft 0.6 m- 4 ft -1.5 m- 2.5 ftarrow_forwardQ5/ If a Moment of M 300 N. m is applied to the flywheel, determine the force that must be developed in the hydraulic cylinder CD to prevent the flywheel from rotating. The coefficient of static friction between the friction pad at B and the flywheel is 0.4. 8/12 Hib 0.6 m 1 m 30° B 60 mm M= 300 N-m 0.3 marrow_forward
- The crane truck has a weight of 10750 lb and a center of gravity at point . The parking brake only locks the rear wheels of the truck, so the front wheels are free to rotate. Determine the maximum force F applied at the angle 0 = 36° that can be exerted on the crane without it slipping or tipping for each of the following cases: Case 1: The static friction coefficient between the rear tires and the ground is μ = 0.060. Case 2: The static friction coefficient between the rear tires and the ground is μ. = 0.35. h CGD . п d k a жь D с LL BY NC SA 2013 Michael Swanbom ၅၁ Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 5 ft b 9 ft с 5.5 ft d 3.5 ft h 11 ft For Case 1, the constraint is Select an answer Fmax lbs. For Case 2, the constraint is Select an answer F max lbs. and andarrow_forwardQ3: The coefficient of static friction [10 M] 300 mm -700 mm between the drum and brake bar is µs = 0. 4. If the moment M = 35 N : +125 mm 500 mm m, determine the smallest force P that needs to be applied to the brake bar in order to prevent the drum from rotating. Also determine the corresponding horizontal and vertical components of reaction at pin 0. Neglect the weight and thickness of the brake bar. The drum has a mass of 25KG.arrow_forwardThe coefficients of static and kinetic friction between the drum and brake bar are μS= 0.4 and μK= 0.3, respectively. If M= 50 N.m and P= 85 N. determine the horizontal and vertical components of reaction at the pin O (shown in Fig. 3). Neglect the weight and thickness of the brake. The drum has a mass of 25 kg.arrow_forward
- The uniform box shown in next figure, has a mass of 40 Kg. If the two forces T 60 N and F 30 N are applied on the box, determine if it remains in equilibrium. The coefficient of static friction (u) = 0.24 F=30N T=60N 30 40 Kgarrow_forward4-58. The coefficients of static and kinetic friction between the drum and brake bar are p. = 0.4 and ua = 0.3, respectively. If M - 50 N- m and P - 85 N, determine the horizontal and vertical components of reaction at the pin 0. Neglect the weight and thickness of the brake. The drum has a mass of 25 kg. 300 mm -700 mm- B. F125 mm 500 mmarrow_forwardThe light bar is used to support the 50-kg block in its vertical guides. If the coefficient of static friction is 0.30 at the upper end of the bar and 0.40 at the lower end of the bar, find the friction force acting at each end for x = 75 mm. Also find the maximum value of x for which the bar will not slip 50 kg A 300 mmarrow_forward
- The figure shows a bar in equilibrium position resting on the floor at point A and on the wall at point B. If the mass of the bar is m and the angle it makes with the floor is θ = π/6, find the magnitudes of the frictional and normal forces at points A and B.arrow_forwardI want also the reference please.if you knowarrow_forwardThe rope running over two fixed cylinders carries the 4-kg mass at one end. Determine the force P that must be applied to the other end to initiate motion. The coefficient of static friction between the rope and the cylinders is 0.15. BISECTION METHODarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY