Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.38P
Consider potential flow of a uniform stream in the x direction plus two equal sources, one at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1
Given a steady flow, where the velocity is described by:
u = 3 cos(x) + 2ry
v = 3 sin(y) + 2?y
!!
!!
a) Find the stream function if it exists.
b) Find the potential function if it exists.
c) For a square with opposite diagonal corners at (0,0) and (47, 27), evaluate the circu-
lation I = - f V.ds where c is a closed path around the square.
d) Calculate the substantial derivative of velocity at the center of the same box.
Question 3
Consider the two-dimensional incompressible velocity potential
O = xy + x² – y2
a)
Show that this flow is irrotational.
b)
Find the stream function Y(x, y), if Y(0,0) = 0 .
(a) A two-dimensional flow field is given byu = 5x 2 − 5y 2v = −10xy(i) Find the streamfunction ψ and velocity potential φ.(ii) Find the equation for the streamline and potential line which passesthrough the point (1, 1).
Chapter 8 Solutions
Fluid Mechanics
Ch. 8 - Prob. 8.1PCh. 8 - The steady plane flow in Fig. P8.2 has the polar...Ch. 8 - P8.3 Using cartesian coordinates, show that each...Ch. 8 - P8.4 Is the function 1/r a legitimate velocity...Ch. 8 - Prob. 8.5PCh. 8 - An incompressible plane flow has the velocity...Ch. 8 - Prob. 8.7PCh. 8 - For the velocity distribution u=By,=+Bx , evaluate...Ch. 8 - Prob. 8.9PCh. 8 - Prob. 8.10P
Ch. 8 - Prob. 8.11PCh. 8 - Prob. 8.12PCh. 8 - P8.13 Starting at the stagnation point in Fig....Ch. 8 - P8.14 A tornado may be modeled as the circulating...Ch. 8 - Hurricane Sandy, which hit the New Jersey coast on...Ch. 8 - Prob. 8.16PCh. 8 - P8.17 Find the position (x, y) on the upper...Ch. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Plot the streamlines of the flow due to a line...Ch. 8 - P8.21 At point A in Fig. P8.21 is a clockwise line...Ch. 8 - P8.22 Consider inviscid stagnation flow, (see...Ch. 8 - P8.23 Sources of strength m = 10 m2/s are placed...Ch. 8 - P8.24 Line sources of equal strength m = Ua, where...Ch. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - Prob. 8.27PCh. 8 - Sources of equal strength m are placed at the four...Ch. 8 - Prob. 8.29PCh. 8 - Prob. 8.30PCh. 8 - A Rankine half-body is formed as shown in Fig....Ch. 8 - Prob. 8.32PCh. 8 - P8.33 Sketch the streamlines, especially the body...Ch. 8 - Prob. 8.34PCh. 8 - Prob. 8.35PCh. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Consider potential flow of a uniform stream in the...Ch. 8 - A large Rankine oval, with a = 1 m and h = 1 m, is...Ch. 8 - Prob. 8.40PCh. 8 - Prob. 8.41PCh. 8 - Prob. 8.42PCh. 8 - P8.43 Water at 20°C flows past a 1-rn-diameter...Ch. 8 - Prob. 8.44PCh. 8 - Prob. 8.45PCh. 8 - P8.46 A cylinder is formed by bolting two...Ch. 8 - Prob. 8.47PCh. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - It is desired to simulate flow past a...Ch. 8 - Prob. 8.51PCh. 8 -
P8.52 The Flettner rotor sailboat in Fig. E8.3...Ch. 8 - P8.52 The Flettner rotor sailboat in Fig. E8.3 has...Ch. 8 - Prob. 8.54PCh. 8 - Prob. 8.55PCh. 8 - Prob. 8.56PCh. 8 - Prob. 8.57PCh. 8 - Prob. 8.58PCh. 8 - Prob. 8.59PCh. 8 - Prob. 8.60PCh. 8 - Prob. 8.61PCh. 8 - Prob. 8.62PCh. 8 - The superposition in Prob. P8.62 leads to...Ch. 8 - Consider the polar-coordinate stream function...Ch. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - Prob. 8.67PCh. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - Prob. 8.70PCh. 8 - Prob. 8.71PCh. 8 - Prob. 8.72PCh. 8 - Prob. 8.73PCh. 8 - Prob. 8.74PCh. 8 - Prob. 8.75PCh. 8 - Prob. 8.76PCh. 8 - Prob. 8.77PCh. 8 - Prob. 8.78PCh. 8 - Prob. 8.79PCh. 8 - Prob. 8.80PCh. 8 - Prob. 8.81PCh. 8 - Prob. 8.82PCh. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Prob. 8.86PCh. 8 - Prob. 8.87PCh. 8 - Prob. 8.88PCh. 8 - Prob. 8.89PCh. 8 - NASA is developing a swing-wing airplane called...Ch. 8 - Prob. 8.91PCh. 8 - Prob. 8.92PCh. 8 - Prob. 8.93PCh. 8 - Prob. 8.94PCh. 8 - Prob. 8.95PCh. 8 - Prob. 8.96PCh. 8 - Prob. 8.97PCh. 8 - Prob. 8.98PCh. 8 - Prob. 8.99PCh. 8 - Prob. 8.100PCh. 8 - Prob. 8.101PCh. 8 - Prob. 8.102PCh. 8 - Prob. 8.103PCh. 8 - Prob. 8.104PCh. 8 - Prob. 8.105PCh. 8 - Prob. 8.106PCh. 8 - Prob. 8.107PCh. 8 - P8.108 Consider two-dimensional potential flow...Ch. 8 - Prob. 8.109PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Prob. 8.112PCh. 8 - Prob. 8.113PCh. 8 - Prob. 8.114PCh. 8 - Prob. 8.115PCh. 8 - Prob. 8.1WPCh. 8 - Prob. 8.2WPCh. 8 - Prob. 8.3WPCh. 8 - Prob. 8.4WPCh. 8 - Prob. 8.5WPCh. 8 - Prob. 8.6WPCh. 8 - Prob. 8.7WPCh. 8 - Prob. 8.1CPCh. 8 - Prob. 8.2CPCh. 8 - Prob. 8.3CPCh. 8 - Prob. 8.4CPCh. 8 - Prob. 8.5CPCh. 8 - Prob. 8.6CPCh. 8 - Prob. 8.7CPCh. 8 - Prob. 8.1DPCh. 8 - Prob. 8.2DPCh. 8 - Prob. 8.3DP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. For incompressible flows, their velocity field 2. In the case of axisymmetric 2D incompressible flows, where is Stokes' stream function, and u = VXS, S(r, z, t) = Uz = where {r, y, z} are the cylindrical coordinates in which the flow is independent on the coordinate and hence 1 Ꭷ r dr 1 dy r dz Show that in spherical coordinates {R, 0, 0} with the same z axis, this result reads Y(R, 0, t) R sin 0 S(R, 0, t) UR uo Y(r, z, t) r = = -eq, and Up = = 1 ay R2 sin Ꮎ ᎧᎾ 1 ƏY R sin Ꮎ ᎧR -eq 2 (1) (2) (3)arrow_forwardb) In a flow field, there are two sources having equal strengths located along the x-axis at x = 0 and x = 3 m, and a sink located on the y -axis at y = 3 m as illustrated in Figure Q2(b). If the strength for each source is 0.5 m²/s and for the sink is 1.0 m²/s, determine the magnitude and direction of the fluid velocity at point P (x, y) = (6 m, 0 m). Y B P 3 m A 3 m 6m Figure Q2(b) Xarrow_forwardThe velocity of flow of fluid is represented by the equation: V=2xi +3vj. The equation of the stream line passing through the point (4,3) is (A) 0.72x = 1,2 (B)¹ = 0.72x¹/² (C) 0.72x2=2 (D) None of thesearrow_forward
- Q3: If P = P(x,y,z), and the equations: Әр дх ӘР ду 0 = 0 Әр дz +10 202 = 0 (3) Are a solution of incompressible shear flow. Find P = P(x, y, z) and v₂ ? 동arrow_forwardQ.5 The velocity components in x and y direction 2 are given by u = Axy° - xy; v = > ху; v — ху = xy² – 3/4 .4 y*. The value of A for a possible flow field involving an incompressible fluid is: A -3/4 В 3 C 4/3 D -4/3arrow_forward3.4 Consider a steady, incompressible, 2D velocity field for motion parallel to the X-axis with constant shear. The shear rate is du/dy Ay. Obtain an expression for the velocity field V. Calculate the rate of rotation. Evaluate the stream function %3D for this flow field. Ay Ay + В і, о, Ay + By+ C 6. Ans: V= 2arrow_forward
- What is the most general form of a purely radial polarcoordinate incompressible flow pattern, υ r = υ r ( r , θ , t ) andυ θ = 0, that satisfies continuity?arrow_forward(b) Two velocity components of a steady, incompressible flow field are given as follows; u = 2ax + bxy + cy? v = axz – byz? where a, b and c are constants. Determine an expression for w as a function of x, y, and z.arrow_forward9- V(D1)^2=V1(D2)^2 mass 10 points continuity equation O true O False 10-stream line is a line giving 10 points direction of velocity at any point. O True O Falsearrow_forward
- 2. Consider a stream function given by = (²+x²). (a) Does this flow satisfy conservation of mass? Show your work. (b) Plot the streamlines for this flow. Let K= 2. Be sure to indicate the direction of the flow. (c) Is this flow irrotational? If so, find the velocity potential for this flow. If not, show that a velocity potential does not exist. (d) Describe the flow represented by this stream function.arrow_forward(c) The 3-plane pattern of a flow is given by w= 3(z + %). Determine the velocity V W = and the direction of flow, a at the point z= 4 +5i. Repeat above calculation for w = 3(z +%)+4i In zarrow_forwardA two dimensional, steady, incompressible and potential flow field of water (ρ=1000 kg/m3) is given with velocity components u and v. If the velocity component, u is given as u=1,5xy m/s with the magnitude of maximum pressure in the field as 42156 Pa. a) At x=+1 m and y=+2 m point, what is the magnitude of the velocity component v (in m/s)? (Please use 2 decimal digits in your answer) b) At x=+1 m and y=+2 m point, what is the magnitude of dynamic pressure (in Pa)? (Please do not use any decimal digit in your answer) c) At x=+1 m and y=+2 m point, what is the magnitude of static pressure (in Pa)? (Please do not use any decimal digit in your answer)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license