Physical Chemistry
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 8.2E

The force of attraction due to gravity follows an equation similar to Coulomb’s law:

F = G m 1 m 2 r 2

Where m 1 and m 2 are the masses of the objects, r is the distance between the objects, and G is the gravitational constant, which equals 6.67 × 10 11 N m 2 / kg 2 .

(a) Calculate the force of gravitational attraction between Earth and the Sun if the mass of Earth equals 5.97 × 10 24 kg , the mass of the Sun is 1.984 × 10 30 kg , and the average distance between them is 1.494 × 10 8 km .

(b) Assuming that the Sun and Earth would have the same magnitude but opposite charges, what charge is necessary to provide a coulombic force that equals the gravitational force between the Sun and Earth? How many moles of electrons is that? To put your answer in perspective, consider that if earth were composed of pure iron, it would contain about 10 26 moles of Fe atoms.

Blurred answer
Students have asked these similar questions
Which carbocation is more stable?
Are the products of the given reaction correct?  Why or why not?
The question below asks why the products shown are NOT the correct products.  I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products.  That's the opposite of what the question was asking.  Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates").  In other words, why is HCl added to the terminal alkene rather than the internal alkene?

Chapter 8 Solutions

Physical Chemistry

Ch. 8 - Prob. 8.11ECh. 8 - Prob. 8.12ECh. 8 - 8.13. Is the disproportionation reaction...Ch. 8 - Prob. 8.14ECh. 8 - Prob. 8.15ECh. 8 - Prob. 8.16ECh. 8 - Prob. 8.17ECh. 8 - 8.18. Determine and for each of the following...Ch. 8 - Prob. 8.19ECh. 8 - Prob. 8.20ECh. 8 - Prob. 8.21ECh. 8 - Prob. 8.22ECh. 8 - Prob. 8.23ECh. 8 - Prob. 8.24ECh. 8 - Prob. 8.25ECh. 8 - Prob. 8.26ECh. 8 - Prob. 8.27ECh. 8 - What is the Zn2+:Cu2+ ratio on a Daniell cell that...Ch. 8 - Prob. 8.29ECh. 8 - Determine the voltage of this reaction with the...Ch. 8 - The thermite reaction can act as the basis of an...Ch. 8 - A concentration cell has different concentrations...Ch. 8 - Prob. 8.34ECh. 8 - Prob. 8.35ECh. 8 - a What is the equilibrium constant for the...Ch. 8 - Prob. 8.37ECh. 8 - Prob. 8.38ECh. 8 - Prob. 8.39ECh. 8 - Prob. 8.40ECh. 8 - Prob. 8.41ECh. 8 - Consider the following formation reaction for HI:...Ch. 8 - Prob. 8.43ECh. 8 - 8.44. Determine an expression for , the change in...Ch. 8 - Prob. 8.45ECh. 8 - Prob. 8.46ECh. 8 - Determine the equilibrium constant for the...Ch. 8 - Prob. 8.48ECh. 8 - Prob. 8.49ECh. 8 - What is the solubility product constant of Hg2Cl2,...Ch. 8 - Prob. 8.51ECh. 8 - Prob. 8.52ECh. 8 - Prob. 8.53ECh. 8 - Prob. 8.54ECh. 8 - Prob. 8.55ECh. 8 - Prob. 8.56ECh. 8 - Prob. 8.57ECh. 8 - Show that a can be written as n+mnn+n+nn, where m...Ch. 8 - Prob. 8.59ECh. 8 - Prob. 8.60ECh. 8 - What molality of NaCl is necessary to have the...Ch. 8 - Prob. 8.62ECh. 8 - Prob. 8.63ECh. 8 - Calculate the molar enthalpy of formation of I(aq)...Ch. 8 - Prob. 8.65ECh. 8 - Hydrofluoric acid, HF(aq), is a weak acid that is...Ch. 8 - Prob. 8.68ECh. 8 - Prob. 8.69ECh. 8 - Prob. 8.70ECh. 8 - Prob. 8.71ECh. 8 - Prob. 8.72ECh. 8 - The mean activity coefficient for an aqueous...Ch. 8 - Human blood plasma is approximately 0.9NaCl. What...Ch. 8 - Under what conditions does the extended...Ch. 8 - Prob. 8.76ECh. 8 - Approximate the expected voltage for the following...Ch. 8 - Prob. 8.78ECh. 8 - Prob. 8.79ECh. 8 - Prob. 8.80ECh. 8 - a The salt NaNO3 can be thought of as...Ch. 8 - Prob. 8.82ECh. 8 - What is the estimated velocity for Cu2+ ions...Ch. 8 - Prob. 8.84ECh. 8 - Prob. 8.85ECh. 8 - Prob. 8.86ECh. 8 - Calculate a the solubility product constant for...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY