The Cosmic Perspective (9th Edition)
9th Edition
ISBN: 9780134874364
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 49EAP
Lunar Rocks. You are dating Moon rocks based on their proportions of uranium-238 (half-life of about 4.5 billion years) and its ultimate decay product, lead. Find the age for each of the following.
- A rock for which you determine that 55% of the original uranium-238 remains, while the other 45% has decayed into lead
- A rock for which you determine that 63% of the original uranium-238 remains, while the other 37% has decayed into lead
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How many impacts would you expect to strike a 100m2 region in one hour during Earth’s formation, assuming that Earth grew to its present size in 10 million years from particles averaging 100 grams each? (Hint: Assume that Earth had its current radius of 6378km.) (Notes: The surface area of a sphere is 4pir2 ; 1yr=3.2x107 .)
a. About 1300.
b. About 13 .
c. About 13,000.
d. About 130
Activity #1. Compare and Contrast. Similarities and differences of Venus, Earth and Mars.
Do this on a separate sheet of paper.
1. Compare and contrast the three (3) terrestrial planets using table 1.
2. Provide explanations for your observations using table 2.
3. Answer the following guide questions.
Guide questions:
1. Does planet size affect gravity?
2. Why do you think Venus has the highest mean temperature among the three planets?
3. Is presence of water a primary factor for a planet to sustain life? Why or why not?
4. Based on your observations using table 2, what are the notable features that makes the
earth the only habitable planet among the three terrestrial planets?
5. What conclusions can you make?
Jupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 kmkm (or even higher) above the surface. Io has a mass of 8.93×1022kg8.93×1022kg and a radius of 1821 kmkm.
Chapter 8 Solutions
The Cosmic Perspective (9th Edition)
Ch. 8 - Prob. 1VSCCh. 8 - Prob. 2VSCCh. 8 - Prob. 3VSCCh. 8 -
Briefly describe the four major features of our...Ch. 8 - What is the nebular theory, and why is it widely...Ch. 8 - What do we mean by the solar nebula? What was it...Ch. 8 -
4. Describe the three key processes that led the...Ch. 8 - List the approximate condensation temperature and...Ch. 8 - What was the frost line? Which ingredients...Ch. 8 - Briefly describe the process by which terrestrial...
Ch. 8 - How was the formation of jovian planets similar to...Ch. 8 - What is the solar wind, and what roles did it play...Ch. 8 - How did planet formation lead to the existence of...Ch. 8 - What was the heavy bombardment, and when did it...Ch. 8 - What is the leading hypothesis for the Moon’s...Ch. 8 - Prob. 13EAPCh. 8 - How old is the solar system, and how do we know?Ch. 8 - Surprising Discoveries? Suppose we found a solar...Ch. 8 - Prob. 16EAPCh. 8 - Surprising Discoveries? Suppose we found a solar...Ch. 8 - Prob. 18EAPCh. 8 - Prob. 19EAPCh. 8 - Prob. 20EAPCh. 8 - Prob. 21EAPCh. 8 - Prob. 22EAPCh. 8 - Prob. 23EAPCh. 8 - Prob. 24EAPCh. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Prob. 28EAPCh. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Prob. 31EAPCh. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Explaining the Past. Is it really possible for...Ch. 8 - Prob. 37EAPCh. 8 - Prob. 38EAPCh. 8 - An Early Solar Wind. Suppose the solar wind had...Ch. 8 - Angular Momentum. Suppose our solar nebula had...Ch. 8 - Two Kinds of Planets. The jovian planets differ...Ch. 8 - Prob. 43EAPCh. 8 - Prob. 44EAPCh. 8 - Prob. 45EAPCh. 8 - Prob. 46EAPCh. 8 - Lucky to Be Here? Considering the overall process...Ch. 8 - Radiometric Dating. You are dating rocks by their...Ch. 8 - Lunar Rocks. You are dating Moon rocks based on...Ch. 8 - Carbon-14 Dating. The half-life of carbon-14 is...Ch. 8 - Prob. 51EAPCh. 8 - Icy Earth. How massive would Earth have to have...Ch. 8 - What Are the Odds? The fact that all the planets...Ch. 8 - Spinning Up the Solar Nebula. The orbital speed of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A radioactive nucleus has a half-life of 5108 years. Assuming that a sample of rock (say, in an asteroid) solidified right after the solar system formed, approximately what fraction of the radioactive element should be left in the rock today?arrow_forwardWe think the terrestrial planets formed around solid “seeds” that later grew over time through the accretion of rocks and metals. a) Suppose the Earth grew to its present size in 1 million years through the accretion of particles averaging 100 grams each. On average, how many particles did the Earth capture per second, given that the mass of the Earth is = 5.972 × 10 ^24 kg ? b) If you stood on Earth during its formation and watched a region covering 100 m^2, how many impacts would you expect to see in one hour. Use the impact rate you calculated in part a. You’ll need the following as well: the radius of the Earth is = 6.371 × 10 ^6 m and the surface area of the Earth is 4??^2Eartharrow_forwardThe principle cause of our intense interest in Mars in the decades before the dawn of the space age was that Answers: A. a few astronomers believed that they saw evidence of an intelligent civilization on Mars. B. Mars has seasons just like the Earth and therefore should be inhabitable by humans. C. Mars has an unusual surface color and global dust storms, creating strange weather patterns. D. Mars has unusual orbital properties making our understanding of its motion around the Sun very difficult.arrow_forward
- The close encounter hypothesis was rejected because of the following reasons except for this reason. b. It explained the planets were formed by gravitational disruption c. It failed to explain the orbital motions of planets d. It failed to explain why the solar system have 2 types of planets: terrestrial and jovianarrow_forwardImpact Energy. Consider a comet about 2 kilometers across with a mass of 4 × 1012 kg. Assume that it crashes into Earth at a speed of 30,000 meters per second (about 67,000 miles per hour). a. What is the total energy of the impact, in joules? (Hint: The kinetic energy formula tells us that the impact energy in joules will be 1 × m × v2, where 2 m is the comet’s mass in kilograms and v is its speed in meters per second.) b. A 1-megaton nuclear explosion releases about 4 × 1015 joules of energy. How many such nuclear bombs would it take to release as much energy as the comet impact? c. Based on your answers, comment on the degree of devastation the comet might cause.arrow_forwardYou analyze a sample of a meteorite that landed on Earth and find that 7/8 of the uranium-238 radioactive atoms have decayed into lead-206. What is the age of the sample (in years) if the half-life of uranium-238 is 4.5 billion years?arrow_forward
- Which of the following describes what happens when we burn fossil fuels to produce energy? Fossil fuels release water and air into the atmosphere. A decrease in the overall temperature of the planet. A marked rise in the overall temperature of the planet. Fossil fuels release greenhouse gases into the air.arrow_forwardScientists find evidence of a large meteor impact on the coast of the YucatánPeninsula in Mexico. What can the scientists most likely expect to find in the layers of rock that are about the same age as the impact?A. evidence of the mass extinction of many speciesB. evidence of a gradual change of one species over timeC. evidence of a rapid change in one speciesD. evidence of the stability of many species over timearrow_forwardCO2 and planetary warming: understanding Earth’s complicated atmosphere Mars has an atmospheric pressure of 6 mbar (compared with Earth atmosphere pressure of 1013 mbar), 96% of which is CO2. The average calculated temperature of Mars is -57°C, whereas the actual average temperature is -55°C so that the amount of warming due to CO2 is only 2°C. On the other hand, the average calculated temperature of Earth, with 0.4 mbar of CO2, is -19°C, whereas the actual average temperature is 15°C so that the amount of warming due to CO2 is 34°C, much greater than that on Mars, which has higher CO2 concentration. Explain how this is possible.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY