Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
1st Edition
ISBN: 9781337684637
Author: Debora M. Katz
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 47PQ
An intrepid physics student decides to try bungee jumping. She obtains a cord that is 9.00 m long and has a spring constant of 5.00 × 102 N/m. When fully suited, she has a mass of 70.0 kg. She looks for a bridge to which she can tie the cord and step off. Determine the minimum height of the bridge that will allow her to stay dry (that is, so that she stops just before hitting the water below). Assume air resistance is negligible.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
a)A 48 g ice cube can slide without friction up and down a 30∘ slope. The ice cube is pressed against a spring at the bottom of the slope, compressing the spring 10 cm. The spring constant is 23 N/m.When the ice cube is released, what total distance will it travel up the slope before reversing direction?
Express your answer with the appropriate units.
b)The ice cube is replaced by a 48 g plastic cube whose coefficient of kinetic friction is 0.20. How far will the plastic cube travel up the slope?
Express your answer with the appropriate units.
It's your birthday, and you decide to celebrate by bungee-jumping. You
stand on a bridge 100 m above a raging river and attach a 30.0-m-long
bungee cord to your harness. A bungee cord, for practical purposes, is just
a long.spring, and this cord has a spring constant of 40.0 N/m. Assume that
your mass is 80 kg. After a long hesitation, you dive off the bridge. How far
are you above the water when the cord reaches its maximum elongation?
A 7.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.900 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)?
Chapter 8 Solutions
Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
Ch. 8.1 - Comet Halleys Orbital Parameters Figure 8.1 shows...Ch. 8.2 - Prob. 8.2CECh. 8.2 - Prob. 8.3CECh. 8.3 - In Figure 8.11, a person launches a ball off of a...Ch. 8 - Case Study From Figure 8.1B for Comet Halley, is...Ch. 8 - Estimate the kinetic energy of the following: a....Ch. 8 - Prob. 3PQCh. 8 - Prob. 4PQCh. 8 - A 0.430-kg soccer ball is kicked at an initial...Ch. 8 - Prob. 6PQ
Ch. 8 - According to a scaled woman, a 67.7-kg man runs...Ch. 8 - Prob. 8PQCh. 8 - Prob. 9PQCh. 8 - Prob. 10PQCh. 8 - Prob. 11PQCh. 8 - Prob. 12PQCh. 8 - Prob. 13PQCh. 8 - In each situation shown in Figure P8.12, a ball...Ch. 8 - Prob. 15PQCh. 8 - Prob. 16PQCh. 8 - Prob. 17PQCh. 8 - Prob. 18PQCh. 8 - A ball of mass 0.40 kg hangs straight down on a...Ch. 8 - Prob. 20PQCh. 8 - Prob. 21PQCh. 8 - Prob. 22PQCh. 8 - One type of toy car contains a spring that is...Ch. 8 - A block is placed on top of a vertical spring, and...Ch. 8 - Rubber tends to be nonlinear as an elastic...Ch. 8 - A block is hung from a vertical spring. The spring...Ch. 8 - A spring of spring constant k lies along an...Ch. 8 - A block on a frictionless, horizontal surface is...Ch. 8 - A falcon is soaring over a prairie, flying at a...Ch. 8 - A stellar black hole may form when a massive star...Ch. 8 - A newly established colony on the Moon launches a...Ch. 8 - The Flybar high-tech pogo stick is advertised as...Ch. 8 - An uncrewed mission to the nearest star, Proxima...Ch. 8 - A small ball is tied to a string and hung as shown...Ch. 8 - Prob. 35PQCh. 8 - Prob. 36PQCh. 8 - Prob. 37PQCh. 8 - Prob. 38PQCh. 8 - Figure P8.39 shows two bar charts. In each, the...Ch. 8 - Prob. 40PQCh. 8 - If a spacecraft is launched from the Moon at the...Ch. 8 - A 1.50-kg box rests atop a massless vertical...Ch. 8 - A man unloads a 5.0-kg box from a moving van by...Ch. 8 - Starting at rest, Tina slides down a frictionless...Ch. 8 - Prob. 45PQCh. 8 - Karen and Randy are playing with a toy car and...Ch. 8 - An intrepid physics student decides to try bungee...Ch. 8 - A block of mass m = 1.50 kg attached to a...Ch. 8 - Prob. 49PQCh. 8 - A jack-in-the-box is actually a system that...Ch. 8 - A side view of a half-pipe at a skateboard park is...Ch. 8 - Prob. 52PQCh. 8 - Prob. 53PQCh. 8 - Prob. 54PQCh. 8 - A particle moves in one dimension under the action...Ch. 8 - Prob. 56PQCh. 8 - Prob. 57PQCh. 8 - Prob. 58PQCh. 8 - Prob. 59PQCh. 8 - Much of the mass of our Milky Way galaxy is...Ch. 8 - A stellar black hole may form when a massive star...Ch. 8 - Prob. 62PQCh. 8 - Prob. 63PQCh. 8 - FIGURE 8.38 Comparison of a circular and an...Ch. 8 - A 50.0-g toy car is released from rest on a...Ch. 8 - Prob. 66PQCh. 8 - The Earths perihelion distance (closest approach...Ch. 8 - After ripping the padding off a chair you are...Ch. 8 - A In a classic laboratory experiment, a cart of...Ch. 8 - A block is attached to a spring, and the block...Ch. 8 - At the start of a basketball game, a referee...Ch. 8 - At the start of a basketball game, a referee...Ch. 8 - Prob. 73PQCh. 8 - Prob. 74PQCh. 8 - At 220 m, the bungee jump at the Verzasca Dam in...Ch. 8 - Prob. 76PQCh. 8 - A block of mass m1 = 4.00 kg initially at rest on...Ch. 8 - A Eric is twirling a ball of mass m = 0.150 kg...Ch. 8 - Prob. 79PQCh. 8 - Prob. 80PQCh. 8 - Prob. 81PQCh. 8 - Prob. 82PQCh. 8 - Prob. 83PQCh. 8 - Prob. 84PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The ball launcher in the machine sends metal balls up one side of the machine and then into play. The spring in the launcher (Fig. P6.60) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting.arrow_forwardWhy is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The hall launcher in the machine sends metal halls up one side of the machine and then into play. The spring in the launcher (Fig. P7.44) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting. Figure P7.44arrow_forwardA 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P8.62a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P8.62b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P8.62c). The object is then forced toward the left by the spring (Fig. P8.62d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P8.62e). Find (a) the distance of compression d, (b) the speed vat the unstretched posi-tion when the object is moving to the left (Fig. P8.624), and (c) the distance D where the abject comes to rest. Figure P8.62arrow_forward
- A block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forwardA 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P7.68a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P7.68b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P7.68c). The object is then forced toward the left by the spring (Fig. P7.68d) and continues to move in that direction beyond the springs unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P7.68e). Find (a) the distance of compression d, (b) the speed v at the unstretched position when the object is moving to the left (Fig. P7.68d), and (c) the distance D where the object comes to rest. Figure P7.68arrow_forwardAt 220 m, the bungee jump at the Verzasca Dam in Locarno, Switzerland, is one of the highest jumps on record. The length of the elastic cord, which can be modeled as having negligible mass and obeying Hookes law, has to be precisely tailored to each jumper because the margin of error at the bottom of the dam is less than 10.0 m. Kristin prepares for her jump by first hanging at rest from a 10.0-m length of the cord and is observed to stretch the rope to a total length of 12.5 m. a. What length of cord should Kristin use for her jump to be exactly 220 m? b. What is the maximum acceleration she will experience during her jump?arrow_forward
- A toy cannon uses a spring to project a 5.30-g soft rubber ball. The spring is originally compressed by 5.00 cm and has a force constant of 8.00 N/m. When the cannon is fired, the ball moves 15.0 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.032 0 N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? (b) At what point does the hall have maximum speed? (c) What is this maximum speed?arrow_forwardA block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forwardAn athlete jumping vertically on a trampoline leaves the surface with a velocity of 8.5 m/s upward. What maximum height does she reach? (a) 13 m (b) 2.3 m (c) 3.7 m (d) 0.27 m (e) The answer cant be determined because the mass of the athlete isnt given.arrow_forward
- A) A1.2 kg block slides down a frictionless incline with a slope angle of 42", starting from a height h =3.2 m above the bottom of the incline, as shown in Figure (2). The incline meets a frictionless horizontal surface, at the end of which is a spring in its equilibrium position (k 460 N/m) used to stop the block. Find the maximum compression of the spring.arrow_forwardThe ball launcher in a pinball machine has a spring that has a force constant of 1.23 N/cm. The surface on which the ball moves is in- clined 15.6◦ with respect to the horizontal. If the spring is initially compressed 3.58 cm, find the launching speed of a 0.19 kg ball when the plunger is released. The acceleration due to gravity is 9.8 m/s2 . Friction and the mass of the plunger are negligible.arrow_forwardDuring spring semester at MIT, residents of the parallel buildings of the East Campus dorms battle one another with large catapults that are made with surgical hose mounted on a window frame. A balloon filled with dyed water is placed in a pouch attached to the hose, which is then stretched through the width of the room. Assume that the stretching of the hose obeys Hooke's law with a spring constant of 80.0 N/m. If the hose is stretched by 3.80 m and then released, how much work does the force from the hose do on the balloon in the pouch by the time the hose reaches its relaxed length? Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY