College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
The ball launcher in a pinball machine has a spring that has a force constant of 1.23 N/cm. The surface on which the ball moves is in- clined 15.6◦ with respect to the horizontal.
If the spring is initially compressed 3.58 cm, find the launching speed of a 0.19 kg ball when the plunger is released. The acceleration due to gravity is 9.8 m/s2 . Friction and the mass of the plunger are negligible.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 3.00 kgkg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0360 mm. The spring has force constant 845 N/mN/m. The coefficient of kinetic friction between the floor and the block is 0.420. The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 mm from its initial position? (At this point the spring is compressed 0.0190 mm.) Express your answer with the appropriate units.arrow_forwardA toy cannon uses a spring to project a 5.32-g soft rubber ball. The spring is originally compressed by 5.05 cm and has a force constant of 7.95 N/m. When the cannon is fired the ball moves 14.3 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.031 0 N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? 1.41 m/s (b) At what point does the ball have maximum speed? cm (from its original position) (c) What is this maximum speed? m/sarrow_forwardYou attach a 2.10 kg weight to a horizontal spring that is fixed at one end. You pull the weight until the spring is stretched by 0.300 m and release it from rest. Assume the weight slides on a horizontal surface with negligible friction. The weight reaches a speed of zero again 0.100 s after release (for the first time after release). What is the maximum speed of the weight (in m/s)? m/s Need Help? Read It Submit Answerarrow_forward
- A 356 g block is dropped onto a relaxed vertical spring that has a spring constant of k 1.7 N/cm. The block becomes attached to the spring and compresses the spring 12.6 cm before momentarily stopping. What is the speed of the block just before it hits the spring (assume that friction is negligible)? (Your result must be in m/s and include 1 digit after the decimal point. Maximum of 5% of error is accepted in your answer. Take g-9.8 m/s?.)arrow_forwardA coin that is tossed straight up into the air. After it is released, it moves upward, reaches its highest point and falls back down again. Use one of the following choices (A through G) to indicate the acceleration of the coin during each of the stages of the coin's motion described below. Take up to be the positive direction. Answer choice J if you think that none is correct. A. The acceleration is in the negative direction and constant. B. The acceleration is in the negative direction and increasing. C. The acceleration is in the negative direction and decreasing. D. The acceleration is zero. E. The acceleration is in the positive direction and constant. F. The acceleration is in the positive direction and increasing. G. The acceleration is in the positive direction and decreasing. The coin is moving downward. A OF ΟΕ Barrow_forwardA block of mass 15.0 kg slides from rest down a frictionless 33.0° incline and is stopped by a strong spring with k = 4.00 ✕ 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?arrow_forward
- A 6.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the end of its track. What is the force constant k of the spring?arrow_forwardA toy cannon uses a spring to project a 5.35-g soft rubber ball. The spring is originally compressed by 4.94 cm and has a force constant of 8.07 N/m. When the cannon is fired, the ball moves 15.8 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.032 8 N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? m/s (b) At what point does the ball have maximum speed? cm (from its original position) (c) What is this maximum speed? m/s Need Help? Read It Watch Itarrow_forwardA 7.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.900 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)?arrow_forward
- A 3.00 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0370 m. The spring has force constant 900 N/m. The coefficient of kinetic friction between the floor and the block is 0.410. The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0110 m from its initial position? (At this point the spring is compressed 0.0260 m.)arrow_forwardTo measure the static friction coefficient between a 1.40-kg block and a vertical wall, a spring (k = 770 N/m) is attached to the block, is pushed on the end in a direction perpendicular to the wall until the block does not slip downward (see figure). If the spring is compressed by 0.048 m, what is the coefficient of static friction?arrow_forwardConsider the track shown in the figure below. Section AB is a quadrant of a circle of radius r = 2.00 m and is frictionless. From B to C is a horizontal section 3.0 m long with a coefficient of kinetic friction μk = 0.250. The section CD under the spring is frictionless. A block of mass m = 1.00 kg is released from rest at A. After sliding on the track, the block compresses 0.200 m the spring. Determine (using conservation of energy): (a) the speed of the block at point B. (b) the thermal energy (internal energy) produced when the block slips from B to C. (c) the velocity of the block at point C. (d) the stiffness constant k for the spring.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON