Travels with My Ant: The Curtate and Prolate Cycloids
Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a wheel traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid, called the curtate and prolate cycloids.
First, let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant trying to get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very edge, where the tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure 7.13).
As we have discussed, we have a lot of ?exibility when parameterizing a curve. In this case we let our parameter t represent the angle the tire has rotated through. Looking at Figure 7.13, we see that after the tire has rotated through an angle of t, the position of the center of the wheel,
Furthermore, letting
Then
Figure 7.13 (a) The ant clings to the edge of the bicycle tire as the tire rolls along the ground. (b) Using geometry to determine the position of the ant after the tire has rotated through an angle of t.
Note that these are the same parametric representations we had before, but we have now assigned a physical meaning to the parametric variable t.
After a while the ant is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the spokes toward the center of the wheel. By climbing toward the center of the wheel, the ant has changed his path of motion. The new path has less up—and-down motion and is called a curtate cycloid (Figure 7.14). As shown in the figure, we let b denote the distance along the spoke from the center of the wheel to the ant. As before, we let t represent the angle the tire has rotated through. Additionally, we let
Figure 7.14 (a) The ant climbs up one of the spokes toward the center of the wheel. (b) The ant’s path of motion after he climbs closer to the center of the wheel. This is called a curtate cycloid. (c) The new setup, now that the ant has moved closer to the center of the wheel.
2. Use geometry to ?nd expressions for
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Calculus Volume 2
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics (13th Edition)
- Shooting into the Wind Suppose that a projectile is fired into a headwind that pushes it back so as to reduce its horizontal speed by a constant amount . Find parametric equations for the path of the projectile.arrow_forwardIf a conic section is written as a polar equation, what must be true of the denominator?arrow_forwardWhat do we know about the focus/foci of a conic section if it is written as a polar equation?arrow_forward
- If a conic section is written as a polar equation, and the denominator involves sin , what conclusion can be drawn about the directrix?arrow_forwardA semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 50 feet and a height at the center of 10 feet. (a) Sketch the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin. Label the coordinates of the known points. (b) Find an equation of the semielliptical arch over the tunnel. (c) You are driving a moving truck that has a width of 8 feet and a height of 9 feet. Will the moving truck clear the opening of the arch?arrow_forwardEpicycloid If the circle C of Exercise 63 rolls on the outside of the larger circle, the curve traced out by P is called an epicycloid. Find parametric equations for the epicycloid. Hypocycloid A circle C of radius b rolls on the inside of a larger circle of radius a centered at the origin. Let P be a fixed point on the smaller circle, with the initial position at the point (a,0) as shown in the figure. The curve traced out by P is called a hypocycloid. a Show that parametric equations of hypocycloid are x=(ab)cos+bcos(abb) y=(ab)sinbsin(abb) b If a=4b, the hypocycloid is called an asteroid. Show that in this case parametric equations can be reduced to x=acos3y=asin3 Sketch the curve. Eliminate the parameter to obtain an equation for the asteroid in rectangular coordinates.arrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage