(a)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(a)
Answer to Problem 7.52QP
Molecular Geometry | Hybridization of the central atom | |
(a) | Tetrahedral |
|
Explanation of Solution
Tetrahedral
A molecule having tetrahedral geometry has the empirical formula
Figure 1
The bond angle between two atoms in a tetrahedral molecule is
Figure 2
Thus a molecule having tetrahedral geometry has central atom with
(b)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(b)
Answer to Problem 7.52QP
Molecular Geometry | Hybridization of the central atom | |
(b) | Trigonal planar |
|
Explanation of Solution
Trigonal planar
A molecule having trigonal planar geometry has the empirical formula
Figure 3
The bond angle between two atoms in a trigonal planar molecule is
Figure 4
Thus a molecule having trigonal planar geometry has central atom with
(c)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(c)
Answer to Problem 7.52QP
S.No | Molecular Geometry | Hybridization of the central atom |
(c) | Trigonal bipyramidal |
|
Explanation of Solution
Trigonal bipyramidal
A molecule having trigonal bipyramidal geometry has the empirical formula
Figure 5
Trigonal bipyramidal molecule has two set of bonds – two axial bonds and three equatorial bonds. The two axial bonds are
Figure 6
If the d-orbital of the
(d)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(d)
Answer to Problem 7.52QP
S.No | Molecular Geometry | Hybridization of the central atom |
(d) | Linear |
|
Explanation of Solution
Linear
A molecule having linear geometry has the empirical formula
Figure 7
The bond angle between two atoms in linear molecule is
Figure 8
Thus a molecule having linear geometry has central atom with
(e)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(e)
Answer to Problem 7.52QP
S.No | Molecular Geometry | Hybridization of the central atom |
(e) | Octahedral |
|
Explanation of Solution
Octahedral
A molecule having octahedral geometry has the empirical formula
Figure 9
The bond angle between two atoms in octahedral molecule is
Figure 10
If the d-orbital of the
The hybridization of the central atom of the molecules with the given molecular geometries has been predicted.
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: Atoms First
- Calcium cyanamide, CaNCN, is used both to kill weeds and as a fertilizer. Give the Lewis structure of the NCN2 ion and the bonded-atom lone-pair arrangement and hybridization of the carbon atom.arrow_forwardSpecify the electron-pair and molecular geometry for each underlined atom in the following list. Describe the hybrid orbital set used by this atom in each molecule or ion. (a) BBr3 (b) CO2 (c) CH2Cl2 (d) CO32arrow_forwardDraw the Lewis structure for 1, 1-dimethylhydrazine [(CH3)2NNH2, a compound used as a rocket fuel]. What: is the hybridization for the two nitrogen atoms in this molecule? What orbitals overlap to form the bond between the nitrogen atoms?arrow_forward
- • explain the formation of multiple bonds in terms of the overlap of a combination of hybridized and unhybridized atomic orbitals.arrow_forwardGamma hydroxybutyric acid, GHB, infamous as a date rape drug, is used illicitly because of its effects on the nervous system. The condensed molecular formula for GHB is HO(CH2)3COOH. (a) Write the Lewis structure for GHB. (b) Identify the hybridization of the carbon atom in the CH2 groups and of the terminal carbon. (c) Is hydrogen bonding possible in GHB? If so, write Lewis structures to illustrate the hydrogen bonding. (d) Which carbon atoms are involved in sigma bonds? In pi bonds? (e) Which oxygen atom is involved in sigma bonds? In pi bonds?arrow_forwardThe hybridization of the two carbon atoms differs in an acetic acid, CH3COOH, molecule. (a) Designate the correct hybridization for each carbon atom in this molecule. (b) What is the approximate bond angle around each carbon?arrow_forward
- Methylcyanoacrylate is the active ingredient in super glues. Its Lewis structure is (a) How many sigma bonds are in the molecule? (b) How many pi bonds are in the molecule? (c) What is the hybridization of the carbon atom bonded to nitrogen? (d) What is the hybridization of the carbon atom bonded to oxygen? (e) What is the hybridization of the double-bonded oxygen?arrow_forwardWhat hybrid orbitals would be expected for the central atom in each of the following molecules or ions?arrow_forwardButadiene, C4H6, is a planar molecule that has the followingcarbon–carbon bond lengths: (a) Predict the bond angles around each of the carbon atoms and sketch the molecule. (b) From left to right, what is the hybridization of each carbon atom in butadiene? (c) The middle C—C bond length in butadiene (1.48 Å) is a little shorter than the average C—C single bond length (1.54 Å). Does this imply that the middle C—C bond in butadiene is weaker or stronger than the average C—C single bond? (d) Based on your answer for part (c), discuss what additional aspects of bonding in butadiene might support the shorter middle C—C bond.arrow_forward
- In following decomposition reaction:2C3H8(g)⟶ C2H4(g)+ C3H6(g) + CH4(g) + H2(g)For each of the four carbon compounds, do the following: (a) Draw Lewis structure.(b) Predict the geometry about the carbon atom.(c) Determine the hybridization of each type of carbon atom.arrow_forwardThe molecule 2-butene, C4H8, can undergo a geometricchange called cis-trans isomerization:As discussed in the “Chemistry and Life” box on the chemistryof vision, such transformations can be induced bylight and are the key to human vision. (a) What is the hybridizationat the two central carbon atoms of 2-butene?(b) The isomerization occurs by rotation about the centralC¬C bond. With reference to Figure 9.29, explainwhy the p bond between the two central carbon atoms isdestroyed halfway through the rotation from cis- to trans-2-butene. (c) Based on average bond enthalpies (Table 8.3),how much energy per molecule must be supplied to breakthe C¬C p bond? (d) What is the longest wavelength oflight that will provide photons of sufficient energy to breakthe C¬C p bond and cause the isomerization? (e) Is thewavelength in your answer to part (d) in the visible portionof the electromagnetic spectrum? Comment on the importanceof this result for human vision.arrow_forwardFor each of the following molecule: (i) draw the correct Lewis structure; (ii) determine the molecular geometry and the type of hybridization on the central atom, and (iii) predict whether the molecule is polar or nonpolar. (a) BrCl5arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning