Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 42AP

When an object is displaced by an amount x from stable equilibrium, a restoring force acts on it, tending to return the object to its equilibrium position. The magnitude of the restoring force can be a complicated function of x. In such cases, we can generally imagine the force function F(x) to be expressed as a power series in x as F ( x ) = ( k 1 x + k 2 x 2 + k 3 x 3 + ) . The first term here is just Hooke’s law, which describes the force exerted by a simple spring for small displacements. For small excursions from equilibrium, we generally ignore the higher-order terms, but in some cases it may be desirable to keep the second term as well. If we model the restoring force as F = −(k1x + k2x2), how much work is done on an object in displacing it from x = 0 to x = xmax by an applied force −F?

Blurred answer
Students have asked these similar questions
The work done on an object is equal to the integral of the force on that object dotted with its displacent. This looks like W=∫(F.ds) (W is work, F is force, and ds is the infinitesimally small displacement vector). For a force whose direction is the line of motion, the equation becomes W=∫(Fdx). If the force on an object as a function of displacement is F(x)=3x2+x, what is the work as a function of displacement (using calculus application) W(x)? Assume W(0)=0 and the force is in the direction of the object's motion.
Given the points M(0.1, -0.2, -0.1), N(-0.2, 0.1, 0.3), and P(0.4, 0, 0.1), find: (a) the vector RMN; (b)the dot product RMN. RMP ; (c) the scalar projection of RMN on RMP; (d) the vector projection of RMN on RMP; (e) the angle between RMN on RMP.
Consider a pendulum of mass "m" attached to a spring of mass "M that is free to move in single dimension along a frictionless horizontal surface. Take the gravity g = 10 m/s and the gravitational potential energy is equal to zero at the level of block (y= 0). y X Datum of potential energy: PE = 0 e', a) Write the equations of constraints. b) Determine the degree of freedom (S = ??) c) Write the expression of rM as a function of X and unit vector i d) Write the expression of r'm as a function of unit vector i, e', and e', e) Find the expression of kinetic energy of the system as a function of (M, m, X, I, 0,0) f) Write the expression of potential energy PE of the system as a function of (m, I, 0) g) Write the Lagrangian equation h) Deduce the equations of motion from Euler-Lagrange equations

Chapter 7 Solutions

Physics for Scientists and Engineers

Ch. 7 - In 1990, Walter Arfeuille of Belgium lifted a...Ch. 7 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 7 - Prob. 5PCh. 7 - Vector A has a magnitude of 5.00 units, and vector...Ch. 7 - Find the scalar product of the vectors in Figure...Ch. 7 - Using the definition of the scalar product, find...Ch. 7 - A particle is subject to a force Fx that varies...Ch. 7 - In a control system, an accelerometer consists of...Ch. 7 - When a 4.00-kg object is hung vertically on a...Ch. 7 - Express the units of the force constant of a...Ch. 7 - The tray dispenser in your cafeteria has broken...Ch. 7 - A light spring with force constant 3.85 N/m is...Ch. 7 - A small particle of mass m is pulled to the top of...Ch. 7 - The force acting on a particle is Fx = (8x 16),...Ch. 7 - When different loads hang on a spring, the spring...Ch. 7 - A 100-g bullet is fired from a rifle having a...Ch. 7 - (a) A force F=(4xi+3yj), where F is in newtons and...Ch. 7 - Review. The graph in Figure P7.20 specifies a...Ch. 7 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 7 - A 4.00-kg particle is subject to a net force that...Ch. 7 - A 2 100-kg pile driver is used to drive a steel...Ch. 7 - Review. In an electron microscope, there is an...Ch. 7 - Review. You can think of the workkinetic energy...Ch. 7 - You are lying in your bedroom, resting after doing...Ch. 7 - Review. A 5.75-kg object passes through the origin...Ch. 7 - Review. A 7.80-g bullet moving at 575 m/s strikes...Ch. 7 - A 0.20-kg stone is held 1.3 m above the top edge...Ch. 7 - A 1 000-kg roller coaster car is initially at the...Ch. 7 - A 4.00-kg particle moves from the origin to...Ch. 7 - (a) Suppose a constant force acts on an object....Ch. 7 - A force acting on a particle moving in the xy...Ch. 7 - Why is the following situation impossible? A...Ch. 7 - A single conservative force acts on a 5.0-kg...Ch. 7 - A potential energy function for a system in which...Ch. 7 - Prob. 37PCh. 7 - For the potential energy curve shown in Figure...Ch. 7 - A right circular cone can theoretically be...Ch. 7 - The potential energy function for a system of...Ch. 7 - You have a new internship, where you are helping...Ch. 7 - When an object is displaced by an amount x from...Ch. 7 - A particle moves along the xaxis from x = 12.8 m...Ch. 7 - Why is the following situation impossible? In a...Ch. 7 - Prob. 45APCh. 7 - (a) Take U = 5 for a system with a particle at...Ch. 7 - An inclined plane of angle = 20.0 has a spring of...Ch. 7 - An inclined plane of angle has a spring of force...Ch. 7 - Over the Christmas break, you are making some...Ch. 7 - A particle of mass m = 1.18 kg is attached between...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY