University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 36P
An atom in a metastable state has a lifetime of 5.2 ms. Find the minimum uncertainty in the measurement of energy of the excited state.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A relatively long-lived excited state of an atom has a lifetime of 3.00 ms. What is the minimum uncertainty in its energy?
a measurement of an electron's speed is 3.0 x 10^6 and has an uncertainty of 5%. what is the minimum uncertainty in its position?
A certain atom has an energy level 3.60 eV above the ground state. When excited to this state, atom remains for 6.00
us, on the average, before emits a photon and returns to the ground state.
What is the smallest possible uncertainty in energy of the photon?
Chapter 7 Solutions
University Physics Volume 3
Ch. 7 - Check Your Understanding If a=3+4i , what is the...Ch. 7 - Check Your Understanding Suppose that a particle...Ch. 7 - Check Your Understanding For the particle in the...Ch. 7 - Check Your Understanding A sodium atom nukes a...Ch. 7 - Check Your Understanding A particle With mass m is...Ch. 7 - Check Your Understanding Which of the following...Ch. 7 - Check your Understanding (a) Consider an infinite...Ch. 7 - Check Your Understanding The vibrational frequency...Ch. 7 - Check Your Understanding Find the expectation...Ch. 7 - Check Your Understanding A proton with kinetic...
Ch. 7 - What is the physical unit of a wave function,...Ch. 7 - Can the magnitude of a wave function (*(x,t)(x,t))...Ch. 7 - What kind of physical quamtity does a wave...Ch. 7 - What is the physical meaning of a wave function of...Ch. 7 - What is the meaning of the expression "expectation...Ch. 7 - If the formalism of quantum mechanics is 'more...Ch. 7 - Can the de Broglie wavelength of a particle be...Ch. 7 - Can we measure the energy of a free localized...Ch. 7 - Can we measure both the position and momentum of a...Ch. 7 - What is the difference between a wave function...Ch. 7 - If a quantum particle is in a stationary state,...Ch. 7 - Explain the difference between time-dependent and...Ch. 7 - Suppose a wave function is discontinuous at some...Ch. 7 - Using the quantum particle in a box model,...Ch. 7 - Is it possible that when we measure the energy of...Ch. 7 - For a quantum panicle in a box, the first excited...Ch. 7 - Is it possible to measure energy of 0.75h for a...Ch. 7 - Explain the connection between Planck's hypothesis...Ch. 7 - If a classical harmonic oscillator can at rest,...Ch. 7 - Use an example of a quantum particle in a box or a...Ch. 7 - Can we simultaneously measure position and energy...Ch. 7 - When an electron and a proton of the same kinetic...Ch. 7 - What decreases the tunneling probability most:...Ch. 7 - Explain the difference between a box-potential and...Ch. 7 - Can a quantum particle 'escape' from an infinite...Ch. 7 - A tunnel diode and a resonant-tunneling diode both...Ch. 7 - Compute |(x,t)|2 for the function (x,t)=(x)sint,...Ch. 7 - Given the complex-valued function...Ch. 7 - Which one of the following functions, and why,...Ch. 7 - A particle with mass m moving along the x-axis and...Ch. 7 - A wave function of a particle with mass m is given...Ch. 7 - A velocity measurement of an a-particle has been...Ch. 7 - A gas of helium atoms at 273 K is in a cubical...Ch. 7 - If the uncertainty in the y -component of a...Ch. 7 - Some unstable elementary particle has a rest...Ch. 7 - An atom in a metastable state has a lifetime of...Ch. 7 - Measurements indicate that an atom remains in an...Ch. 7 - Suppose an electron is confined to a region of...Ch. 7 - Combine Equation 7.17 and Equation 7.18 to show...Ch. 7 - Show that (x,t)=Aei(kwt) is a valid solution to...Ch. 7 - Show that (x,t)=Asin(kxt) and (x,t)=Acos(kxt) do...Ch. 7 - Show that when 1(x,t) and 2(x,t) are solutions to...Ch. 7 - A particle with mass m is described by the...Ch. 7 - Find the expectation value of the kinetic energy...Ch. 7 - Find the expectation value of the square of the...Ch. 7 - A free proton has a wave function given by...Ch. 7 - Assume that an electron in an atom can be treated...Ch. 7 - Assume that a proton in a nucleus can be treated...Ch. 7 - An electron confined to a box has the ground state...Ch. 7 - What is the ground state energy (in eV) of a...Ch. 7 - What is the ground state energy (in eV) of an a...Ch. 7 - To excite an election in a one-dimensional box...Ch. 7 - An electron confined to a box of width 0.15 nm by...Ch. 7 - If the energy of the first excited state of the...Ch. 7 - Suppose an electron confined to a emits photons....Ch. 7 - Hydrogen H2 molecules are kept at 300.0 K in a...Ch. 7 - An electron is confined to a box of width 0.25 nm....Ch. 7 - An electron in a box is in the ground state with...Ch. 7 - Show that the two lowest energy states of the...Ch. 7 - If the ground state energy of a simple harmonic...Ch. 7 - When a quantum harmonic oscillator makes a...Ch. 7 - Vibrations of the hydrogen molecule H2 can be...Ch. 7 - A particle with mass 0.030 kg oscillates back-and-...Ch. 7 - Find the expectation value x2 of the square of the...Ch. 7 - Determine the expectation value of the potential...Ch. 7 - Verify that given by Equation 7.57 is a solution...Ch. 7 - Estimate the ground state energy of the quantum...Ch. 7 - A mass of 0.250 kg oscillates on a spring with the...Ch. 7 - Show that the wave function in (a) Equation 7.68...Ch. 7 - A 6.0-eV electron impacts on a barrier with height...Ch. 7 - A 5.0-eV electron impacts on a barrier of with...Ch. 7 - A 12.0-eV electron encounters a barrier of height...Ch. 7 - A quantum particle with initial kinetic energy...Ch. 7 - A simple model of a radioactive nuclear decay...Ch. 7 - A muon, a quantum particle with a mass...Ch. 7 - A grain of sand with mass 1.0 mg and kinetic...Ch. 7 - Show that if the uncertainty in the position of a...Ch. 7 - The mass of a -meson is measured to be 770MeV/c2...Ch. 7 - A particle of mass m is confined to a box of width...Ch. 7 - A particle in a box [0; L] is in the third excited...Ch. 7 - A 0.20-kg billiard ball bounces back and forth...Ch. 7 - Find the expectation value of the position squared...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Atoms in a crystal lattice vibrate in simple...Ch. 7 - A diatomic molecule behaves like a quantum...Ch. 7 - An electron with kinetic energy 2.0 MeV encounters...Ch. 7 - A beam of mono-energetic protons with energy 2.0...Ch. 7 - An electron in a long, organic molecule used in a...Ch. 7 - In STM, an elevation of the tip above the surface...Ch. 7 - If STM is to detect surface features with local...Ch. 7 - Use Heisenberg's uncertainty principle to estimate...Ch. 7 - Suppose an infinite square well extends from L/2...Ch. 7 - A particle of mass m confined to a box of width L...
Additional Science Textbook Solutions
Find more solutions based on key concepts
16. A geneticist crosses a pure-breeding strain of peas producing yellow, wrinkled seeds with one that is pure...
Genetic Analysis: An Integrated Approach (3rd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
1. A person gets in an elevator on the ground floor and rides it to the top floor of a building. Sketch a veloc...
College Physics: A Strategic Approach (3rd Edition)
The enzyme that catalyzes the C C bond cleavage reaction that converts serine to glycine removes the substitue...
Organic Chemistry (8th Edition)
19. A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 for 6.0 s, coasts for 2.0s, and then slow...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
Knowledge Booster
Similar questions
- Use Heisenberg's uncertainty principle to estimate the ground state energy of a particle oscillating on an spring with angular frequency, =k/m, where k is the spring constant and m is the mass.arrow_forwardIf the uncertainty in the y -component of a proton's position is 2.0 pm, find the minimum uncertainty in the simultaneous measurement of the proton's y -component of velocity. What is the minimum uncertainty in the simultaneous measurement of the proton's x -component of velocity?arrow_forwardA nucleus emits a gamma ray of energy 1.2 MeV from a state that has a lifetime of 2.1 ns. What is the uncertainty in the energy of the gamma ray? The best gamma-ray detectors can measure gamma-ray energies to a precision of no better than a few eV. Will this uncertainty be directly measurable?arrow_forward
- A proton is confined within an atomic nucleus of diameter 4 fm (1 fm = 10-15 m). Estimate the uncertainty in speed for a proton in the nucleus.arrow_forwardAn atom in an excited state of 4.7 eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.0 x 10-13 s. (a) What is the energy uncertainty of the emitted photon? (b) What is the spectral line width (in wavelength) of the photon?arrow_forwardThe speed of an electron is measured to within an uncertainty of 2.0 × 104 m/s. What is the size of the smallest region of space in which the electron can be confined?arrow_forward
- The speed of an electron is measured to be 5.00 × 103 m/s to an accuracy of 0.003 00%. Find the minimum uncertainty in determining the position of this electron.arrow_forwardAn electron is trapped within a sphere whose diameter is 5.40×10−155.40×10−15 m (about the size of the nucleus of a medium sized atom). What is the minimum uncertainty in the electron's momentum?arrow_forwardthe measurement of electron energy requires a time interval of 1.0x10^28s. What's the smallest possible uncertainty in the electrons energy?arrow_forward
- The speed of a proton is measured to within an uncertainty of 1 × 103m/s. Calculate the length of the smallest region of space in which the electron can be confined.arrow_forwardThe lifetimes of the levels in a hydrogen atom are of the order of 10-8 s. Find the energy uncertainty of the first excited state and compare it with the energy of the state. 3 p ROarrow_forwardA nucleon (proton or neutron) is confined to a region of space (the nucleus) approximately 10 fm across. Assuming the momentum of a nucleon is roughly equal to the uncertainty in its momentum, estimate the nucleon's kinetic energy. Does this seem like a reasonable result?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning