Principles of General, Organic, Biological Chemistry
2nd Edition
ISBN: 9780073511191
Author: Janice Gorzynski Smith Dr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.56AP
Interpretation Introduction
Interpretation:
The pressure inside the container has to be given.
Concept Introduction:
Gay Lussac’s Law:
At constant volume, the temperature and the pressure of the gas are proportionally related.
Where P is the pressure of the gas.
T is the temperature of the gas in Kelvin.
K is the constant.
The temperature or the pressure of the gas can be calculated using the relation,
Where
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sample of an ideal gas at 1.00 atm1.00 atm and a volume of 1.28 L1.28 L was placed in a weighted balloon and dropped into the ocean. As the sample descended, the water pressure compressed the balloon and reduced its volume. When the pressure had increased to 25.0 atm,25.0 atm, what was the volume of the sample? Assume that the temperature was held constant.
The volume of a sample of pure HCl gas was 289 mL at 24
°
C and 137 mmHg. It was completely dissolved in about 50 mL of water and titrated with an NaOH solution;
11.7 mL
of the NaOH solution was required to neutralize the HCl. Calculate the molarity of the NaOH solution.
At constant temperature, a sample of helium at 760. mmHg in a closed container was compressed from 5.00 L to 3.00 L. What was the new pressure ( in mmHg) exerted by the helium on its container?
Chapter 6 Solutions
Principles of General, Organic, Biological Chemistry
Ch. 6.1 - Typical atmospheric pressure in Denver is 630 mm...Ch. 6.1 - Prob. 6.2PCh. 6.1 - Prob. 6.3PCh. 6.2 - Prob. 6.4PCh. 6.2 - Prob. 6.5PCh. 6.3 - A volume of 0.50 L of air at 37 C is expelled from...Ch. 6.3 - (a) A volume (25.0 L) of gas at 45 K is heated to...Ch. 6.3 - Prob. 6.8PCh. 6.4 - Prob. 6.9PCh. 6.4 - Prob. 6.10P
Ch. 6.4 - Prob. 6.11PCh. 6.5 - Prob. 6.12PCh. 6.6 - Prob. 6.13PCh. 6.6 - Prob. 6.14PCh. 6.6 - Prob. 6.15PCh. 6.6 - Prob. 6.16PCh. 6.7 - Prob. 6.17PCh. 6.7 - Prob. 6.18PCh. 6.7 - Prob. 6.19PCh. 6.8 - Prob. 6.20PCh. 6.8 - Prob. 6.21PCh. 6.8 - Prob. 6.22PCh. 6.9 - Prob. 6.25PCh. 6.9 - Prob. 6.26PCh. 6 - Prob. 6.27UKCCh. 6 - Prob. 6.28UKCCh. 6 - Prob. 6.29UKCCh. 6 - Prob. 6.30UKCCh. 6 - Prob. 6.31UKCCh. 6 - Prob. 6.32UKCCh. 6 - Prob. 6.33UKCCh. 6 - Prob. 6.34UKCCh. 6 - Prob. 6.35UKCCh. 6 - Prob. 6.36UKCCh. 6 - Prob. 6.37UKCCh. 6 - Prob. 6.38UKCCh. 6 - Prob. 6.39UKCCh. 6 - Prob. 6.40UKCCh. 6 - Prob. 6.41APCh. 6 - The lowest atmospheric pressure ever measured is...Ch. 6 - Prob. 6.43APCh. 6 - Prob. 6.44APCh. 6 - Prob. 6.45APCh. 6 - Prob. 6.46APCh. 6 - Prob. 6.47APCh. 6 - Prob. 6.48APCh. 6 - Prob. 6.49APCh. 6 - Prob. 6.50APCh. 6 - Prob. 6.51APCh. 6 - Prob. 6.52APCh. 6 - Prob. 6.53APCh. 6 - Prob. 6.54APCh. 6 - Prob. 6.55APCh. 6 - Prob. 6.56APCh. 6 - Prob. 6.57APCh. 6 - Prob. 6.58APCh. 6 - Prob. 6.59APCh. 6 - Prob. 6.60APCh. 6 - Prob. 6.61APCh. 6 - Prob. 6.62APCh. 6 - Prob. 6.63APCh. 6 - Prob. 6.64APCh. 6 - Prob. 6.65APCh. 6 - Prob. 6.66APCh. 6 - Prob. 6.67APCh. 6 - Prob. 6.68APCh. 6 - Prob. 6.69APCh. 6 - Prob. 6.70APCh. 6 - Prob. 6.71APCh. 6 - Prob. 6.72APCh. 6 - Prob. 6.73APCh. 6 - Prob. 6.74APCh. 6 - Prob. 6.75APCh. 6 - Prob. 6.77APCh. 6 - Prob. 6.79APCh. 6 - Prob. 6.81APCh. 6 - Prob. 6.82APCh. 6 - Prob. 6.83APCh. 6 - Prob. 6.84APCh. 6 - Prob. 6.85APCh. 6 - Prob. 6.86APCh. 6 - Prob. 6.87APCh. 6 - Prob. 6.88APCh. 6 - Prob. 6.89CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- You have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardIf equal masses of O2 and N2 are placed in separate containers of equal volume at the same temperature, which of the following statements is true? If false, explain why it is false. (a) The pressure in the flask containing N2 is greater than that in the flask containing O2. (b) There are more molecules in the flask containing O2 than in the flask containing N2.arrow_forward
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardIn the discussion on the composition of air, mention is made of the fact that water vapor may have a concentration as high as 40,000 ppm. Calculate the partial pressure exerted by water vapor at this concentration. Assume that this represents a situation with 100% humidity. What temperature would be needed to achieve this value? (See Appendix G.)arrow_forwardA mixture contained calcium carbonate, CaCO3, and magnesium carbonate, MgCO3. A sample of this mixture weighing 7.85 g was reacted with excess hydrochloric acid. The reactions are CaCO3(g)+2HCL(aq)CaCl2(aq)+H2O(I)+CO2(g)MgCO3(s)+2HCL(aq)MgCl2(aq)+H2O(I)+CO2(g) If the sample reacted completely and produced 1.94 L of carbon dioxide, CO2, at 25C and 785 mmHg, what were the percentages of CaCO3 and MgCO3 in the mixture?arrow_forward
- The pressure of a sample of argon gas was increased from 1.81 atm1.81 atm to 6.65 atm6.65 atm at constant temperature. If the final volume of the argon sample was 18.2 L,18.2 L, what was the initial volume of the argon sample? Assume ideal behavior.arrow_forward1. Ammonia gas is produced by the reaction: N2(g) + 3H2(g) → 2NH3 (g). (a) How many liters of ammonia can be produced from 10.8 L of hydrogen? Assume that all gases were measured at a constant temperature and pressure. (b) If the reaction was made to occur at 2 atm pressure at 254 K, how many moles of ammonia were produced?arrow_forwardWhat is the mass of neon that exerts a pressure of 720. mmHg, with a temperature of -15.0 °C, when the volume of the container is 760. mL?arrow_forward
- A compound has the empirical formula of SF4. At 20. °C, 0.100 g of the gaseous compound occupies a volume of 22.1 mL and exerts a pressure of 1.02 atm. What is the molecular formula for this gas?arrow_forwardA 2.43 L volume of hydrogen measured at −150. °C is warmed to 100.°C. Calculate the volume (in L) of the gas at the higher temperature, assuming no change in pressure.arrow_forwardA 35.0 L sample of gas collected in the upper atmosphere at a pressure of 48.6 torr is compressed into a 150.0 ml. container at the same temperature. (a) What is the new pressure, in atmospheres? (b) To what volume would the original sample have had to be compressed to exert a pressure of 10.0 atm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning