Chemistry: Principles and Practice
Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 6.128QE

(a)

Interpretation Introduction

Interpretation:

The pressure of 30.33 mol hydrogen at 240 °C in a 2.44 L container has to be calculated.

Concept Introduction:

Van der Waals equation is given as follows:

  (P+an2V2)(Vnb)=nRT

Here,

P is the pressure,

V is the volume,

T is the temperature,

n is the mole of the gas,

R is the gas constant,

a and b are van der Waals constants.

(a)

Expert Solution
Check Mark

Answer to Problem 6.128QE

The pressure of 30.33 mol hydrogen at 240 °C in a 2.44 L container is 44.054 atm.

Explanation of Solution

The formula to convert degree Celsius to kelvin is as follows:

  T(K)=T(°C)+273 K        (1)

Here,

T(K) denotes the temperature in kelvins.

T(°C) denotes the temperature in Celsius.

Substitute 240 °C for T(°C) in equation (1).

  T(K)=240 °C+273 K=513 K

Van der Waals equation is given as follows:

  (P+an2V2)(Vnb)=nRT        (2)

Here,

a is a constant that gives the strength of the attractive force.

b gives the measure of size of the gas molecules.

Rearrange the expression (2) to obtain the formula of pressure as follows:

  P=nRT(Vnb)an2V2        (3)

Refer to table 6.4 for the values of Van der Waals constants of hydrogen.

Substitute 513 K for T , 0.244 atmL2/mol2 for a, 0.0266 L/mol for b, 2.44 L for V, 30.33 mol for n and 0.08206 Latm/molK for R in equation (3).

  P=[(30.33 mol)(0.08206 Latm/molK)(513 K)(2.44 L(30.33 mol)(0.0266 L/mol))(0.244 atm L2/mol2)(30.33 mol)2(2.44 L)2]=744atm

(b)

Interpretation Introduction

Interpretation:

The pressure of 30.33 mol methane at 240 °C in a 2.44 L container has to be calculated.

Concept Introduction:

Refer to part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 6.128QE

The pressure of 30.33 mol methane at 240 °C in a 2.44 L container is 770.5015 atm.

Explanation of Solution

Van der Waals equation is given as follows:

  (P+an2V2)(Vnb)=nRT        (2)

Here,

a is a constant that gives the strength of the attractive force.

b gives the measure of size of the gas molecules.

Rearrange the expression (2) to obtain the formula of pressure as follows:

  P=nRT(Vnb)an2V2        (3)

Refer to table 6.4 for the values of Van der Waals constants of methane.

Substitute 513 K for T, 2.25 atm L2/mol2 for a, 0.0428 L/mol for b, 2.44 L for V, 30.33 mol for n and 0.08206 Latm/molK for R in equation (3).

  P=[(30.33 mol)(0.08206 Latm/molK)(513 K)(2.44 L((30.33 mol)(0.0428 L/mol)))(2.25 atm L2/mol2)(30.33 mol)2(2.44 L)2]=1118.161 atm347.654 atm=770.50 atm

(c)

Interpretation Introduction

Interpretation:

The reason behind the differences in the pressures observed for the two gases has to be determined.

Concept Introduction:

Refer to part (a).

(c)

Expert Solution
Check Mark

Explanation of Solution

The value of Van der Waals constants a for hydrogen and methane is 0.244 atm L2/mol2 and 2.25 atm L2/mol2 respectively. Greater the value of a greater is the contribution of pressure as per the Van der Waals equation. Hence the pressure has been found to be greater in methane than the hydrogen.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 6 Solutions

Chemistry: Principles and Practice

Ch. 6 - Prob. 6.11QECh. 6 - Prob. 6.12QECh. 6 - Prob. 6.13QECh. 6 - Prob. 6.14QECh. 6 - Prob. 6.15QECh. 6 - Prob. 6.16QECh. 6 - Prob. 6.17QECh. 6 - Prob. 6.18QECh. 6 - Prob. 6.19QECh. 6 - Prob. 6.20QECh. 6 - Prob. 6.21QECh. 6 - Prob. 6.22QECh. 6 - Prob. 6.23QECh. 6 - Prob. 6.24QECh. 6 - A 39.6-mL sample of gas is trapped in a syringe...Ch. 6 - Prob. 6.26QECh. 6 - Prob. 6.27QECh. 6 - Prob. 6.28QECh. 6 - The pressure of a 900-mL sample of helium is...Ch. 6 - Prob. 6.30QECh. 6 - Prob. 6.31QECh. 6 - Prob. 6.33QECh. 6 - Prob. 6.34QECh. 6 - Prob. 6.35QECh. 6 - Prob. 6.36QECh. 6 - Prob. 6.37QECh. 6 - Prob. 6.38QECh. 6 - Prob. 6.39QECh. 6 - Prob. 6.40QECh. 6 - Prob. 6.41QECh. 6 - Prob. 6.42QECh. 6 - Prob. 6.43QECh. 6 - Prob. 6.44QECh. 6 - Prob. 6.45QECh. 6 - Prob. 6.46QECh. 6 - Prob. 6.47QECh. 6 - Prob. 6.48QECh. 6 - Prob. 6.49QECh. 6 - Calculate the molar mass of a gas if a 0.165-g...Ch. 6 - Prob. 6.51QECh. 6 - Prob. 6.52QECh. 6 - What is the density of He gas at 10.00 atm and 0...Ch. 6 - Prob. 6.54QECh. 6 - Prob. 6.55QECh. 6 - Prob. 6.56QECh. 6 - Prob. 6.57QECh. 6 - Prob. 6.58QECh. 6 - What volume, in milliliters, of hydrogen gas at...Ch. 6 - Prob. 6.60QECh. 6 - Heating potassium chlorate, KClO3, yields oxygen...Ch. 6 - Prob. 6.62QECh. 6 - Prob. 6.63QECh. 6 - Prob. 6.64QECh. 6 - Prob. 6.65QECh. 6 - Prob. 6.66QECh. 6 - Prob. 6.67QECh. 6 - Assuming the volumes of all gases in the reaction...Ch. 6 - Prob. 6.69QECh. 6 - Prob. 6.70QECh. 6 - Prob. 6.71QECh. 6 - Nitrogen monoxide gas reacts with oxygen gas to...Ch. 6 - Prob. 6.73QECh. 6 - Prob. 6.74QECh. 6 - Prob. 6.75QECh. 6 - Prob. 6.76QECh. 6 - Prob. 6.77QECh. 6 - Prob. 6.78QECh. 6 - Prob. 6.79QECh. 6 - Prob. 6.80QECh. 6 - Prob. 6.81QECh. 6 - What is the total pressure exerted by a mixture of...Ch. 6 - Prob. 6.83QECh. 6 - Prob. 6.84QECh. 6 - Prob. 6.85QECh. 6 - Prob. 6.86QECh. 6 - Prob. 6.87QECh. 6 - Prob. 6.88QECh. 6 - Prob. 6.89QECh. 6 - Prob. 6.90QECh. 6 - Prob. 6.91QECh. 6 - Prob. 6.92QECh. 6 - Prob. 6.93QECh. 6 - Prob. 6.94QECh. 6 - Prob. 6.95QECh. 6 - Prob. 6.96QECh. 6 - Prob. 6.97QECh. 6 - Prob. 6.98QECh. 6 - Prob. 6.99QECh. 6 - Prob. 6.100QECh. 6 - Prob. 6.101QECh. 6 - Prob. 6.102QECh. 6 - Prob. 6.103QECh. 6 - Prob. 6.104QECh. 6 - Prob. 6.105QECh. 6 - Prob. 6.106QECh. 6 - Prob. 6.107QECh. 6 - Prob. 6.108QECh. 6 - Prob. 6.109QECh. 6 - A gas effuses 1.55 times faster than propane...Ch. 6 - For each of the following pairs of gases at the...Ch. 6 - Prob. 6.112QECh. 6 - Prob. 6.113QECh. 6 - Prob. 6.114QECh. 6 - Calculate the pressure, in atm, of 10.2 mol argon...Ch. 6 - Prob. 6.116QECh. 6 - Prob. 6.117QECh. 6 - Prob. 6.118QECh. 6 - Prob. 6.119QECh. 6 - Workers at a research station in the Antarctic...Ch. 6 - Prob. 6.121QECh. 6 - A 1.26-g sample of a gas occupies a volume of 544...Ch. 6 - Prob. 6.123QECh. 6 - Calculate the mass of water produced in the...Ch. 6 - Prob. 6.126QECh. 6 - Prob. 6.127QECh. 6 - Prob. 6.128QECh. 6 - Prob. 6.129QECh. 6 - Prob. 6.130QECh. 6 - Prob. 6.131QECh. 6 - Prob. 6.132QECh. 6 - Prob. 6.133QECh. 6 - Prob. 6.134QECh. 6 - Prob. 6.135QECh. 6 - Prob. 6.136QE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY