Understanding Our Universe
3rd Edition
ISBN: 9780393614428
Author: PALEN, Stacy, Kay, Laura, Blumenthal, George (george Ray)
Publisher: W.w. Norton & Company,
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 41QAP
To determine
The black body flux from a square meter of Mars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
K
What is the wavelength (in nm) of the most intense radiation emitted from the surface of Mercury at high noon? (Hint: Use Wien's law, Amax
= 2.90 x 10° m: K
%3D
T (in K)
nm
In which band of the electromagnetic spectrum is that wavelength? (Hint: Examine the following figure.)
Visible light
Short wavelengths
Long wavelengths
4 x 107 5x 107 6x 107 7x 10meters
(400 nm) (500 nm) (600 nm) /(700 nm)
Wavelength (meters)
10 12
10 10
10
104
102
1
102
104
Gamma-
ray
Ultra-
violet
Micro-
Radio
X-ray
Infrared
wave
UHF VHF FM
AM
a
Opaque
Visual
window
Radio
window
Transparent
Short
Wavelength
Long
b
O gamma-ray
O X-ray
O ultraviolet
O visual
O infrared
O microwave
O radio
оооо о оо
Opacity of
Earth's atmosphere
B2
The fraction of the energy flux received which is reflected into space is the albedo of Venus, av, which is about 0.76. The fraction of the energy flux which is absorbed is then (1-av) = 1. - 0.76 = 0.24. So the amount of energy actually absorbed by Venus in each second is Lv = (1-av)Ev.
Lv = (1-av)Ev = ___________________ ergs/s
And next calculate the effective temperature of Venus:
Tv4 = (Lv/(4pdv2))/s = Lv/(4spdv2) = __________________ K4
and taking the square root of Tv4 twice in succession we get the effective Temperature Tv:
Tv = [Lv/(4spdv2)]0.25 = _________________ K
Calculate Venus' emittance assuming that the Venus' actual temperature, Tvr, is 472o C = 745 K:
ev = Lv/(4pdv2s Tvr4) = __________________ .
Chapter 6 Solutions
Understanding Our Universe
Ch. 6.1 - Prob. 6.1CYUCh. 6.2 - Prob. 6.2CYUCh. 6.3 - Prob. 6.3CYUCh. 6.4 - Prob. 6.4CYUCh. 6.5 - Prob. 6.5CYUCh. 6 - Prob. 1QAPCh. 6 - Prob. 2QAPCh. 6 - Prob. 3QAPCh. 6 - Prob. 4QAPCh. 6 - Prob. 5QAP
Ch. 6 - Prob. 6QAPCh. 6 - Prob. 7QAPCh. 6 - Prob. 8QAPCh. 6 - Prob. 9QAPCh. 6 - Prob. 10QAPCh. 6 - Prob. 11QAPCh. 6 - Prob. 12QAPCh. 6 - Prob. 13QAPCh. 6 - Prob. 14QAPCh. 6 - Prob. 15QAPCh. 6 - Prob. 16QAPCh. 6 - Prob. 17QAPCh. 6 - Prob. 18QAPCh. 6 - Prob. 19QAPCh. 6 - Prob. 20QAPCh. 6 - Prob. 21QAPCh. 6 - Prob. 22QAPCh. 6 - Prob. 23QAPCh. 6 - Prob. 24QAPCh. 6 - Prob. 25QAPCh. 6 - Prob. 26QAPCh. 6 - Prob. 27QAPCh. 6 - Prob. 28QAPCh. 6 - Prob. 29QAPCh. 6 - Prob. 30QAPCh. 6 - Prob. 31QAPCh. 6 - Prob. 32QAPCh. 6 - Prob. 33QAPCh. 6 - Prob. 34QAPCh. 6 - Prob. 35QAPCh. 6 - Prob. 36QAPCh. 6 - Prob. 37QAPCh. 6 - Prob. 38QAPCh. 6 - Prob. 39QAPCh. 6 - Prob. 40QAPCh. 6 - Prob. 41QAPCh. 6 - Prob. 42QAPCh. 6 - Prob. 43QAPCh. 6 - Prob. 44QAPCh. 6 - Prob. 45QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is Mars red?arrow_forwardCalculate the energy flux density, Fm , at the average distance of Mars from the Sun, rm , (energy flux divided by surface area of sphere). Mars' distance from the Sun = rm = 2.279 x 1013 cmFm = L /(4prm2) = ________________ ergs/s Next Calcuate the Amount of Solar Energy absorbed by Mars is the surface area of Mars which is facing the Sun (1/2 of Mars' surface area = 4pdm2 / 2 = 2pdm2 ) . Where dm = 3.398 x 106 cm is the radius of Mars. So Mars receives :arrow_forward1arrow_forward
- Please workout the problem on a piece of paper. Equation: PV=nRTarrow_forwardYou decide to go on an interstellar mission to explore some of the newly discovered extrasolar planets orbiting the star ROTOR. Your spacecraft arrives in the new system, in which there are five planets. ROTOR is identical to the Sun (in terms of its size, mass, age and composition). From your observations of these planets, you collect the following data: Density Average Distance from star (AU] Planet Mass Radius Albedo Temp. [C] Surf. Press. MOI Rotation [Earth = 1] (Earth = 1] [g/cm³] [Atm.] Period (Hours] Factor SIEVER EUGENIA 4.0 0.001 2.0 0.1 5.0 1.0 0.3 20 0.8 N/A 3.0 0.2 N/A 0.3 0.4 0.35 20 10 500 1000 5.0 4.0 0.5 0.8 0.4 0.7 -50 MARLENE CRILE 1.0 1.0 3.0 8.0 1,5 0.0 0.50 0.50 0.25 150 0.4 JANUS 100 12 0.1 10 -80 0.2 200 Figure 1: А Rotor 850 890 900 Wavelength (nm) A Sun В C 860 900 910 Wavelength (nm) 2414 a asarrow_forwardOn the night side of Venus, we find that the brightest wavelength, that is the wavelength this region of the planet is emitting the most energy, is about 3.9 micrometres (3.9x10-6 meters). Approximately how warm is the planet in this region?arrow_forward
- Consider the greenhouse effect in an atmosphere model consisting of two infrared-opaque layers. Find the temperatures of both layers and the temperature of the planet's surface.arrow_forwardVenus exosphere has a temperature of about 347 K. What is the thermal speed of hydrogen in km/s in Venus exosphere? The mass of hydrogen atom is 1.67 x10-27 kg and Boltzmann constant is k=1.38 x10-23 Joule/Kelvinarrow_forwardAccording to http://hyperphysics.phy-str.gsu.edu/hbase/solar/venusenv.html, the atmosphere of Venus is approximately 96.5% CO2 and 3.5% N2 by volume. On the surface, where the temperature is about 750 K and the pressure is about 90 atm, what is the density of the atmosphere?arrow_forward
- Use Stefan-Boltzmann equation and the definition of albedo to derive the equation that provides the planet's temperature as a function of distance from the Sun that the planet's cross section is TR,². Usearrow_forwardTitans exosphere has a temperature of about 174 K. What is the thermal speed of hydrogen (in km/s) in Titans exosphere ? The mass of a hydrogen atom is 1.67 x10-27kg and Boltzmann's constant is k=1.38 x10-23 Joule/Kelvinarrow_forwardWhat is the value of the IR transmission factor (f) for a Venus-like planet, if the measured average surface temperature is 706 K? Assume the following values for the planet: E, = 2.60x10³ W m² and a = 0.71. Would the average temperature increase or decrease if f decreased?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY