Bundle: Principles of Modern Chemistry, 8th + OWLv2, 1 term (6 months) Printed Access Card
8th Edition
ISBN: 9781305705456
Author: OXTOBY, David W., Gillis, H. Pat, Butler, Laurie J.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 30P
The molecular ion
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Two useful organic compounds that contain Cl atoms are vinyl chloride(CH2=CHCl) and chloroethane (CH3CH2Cl). Vinyl chloride is the startingmaterial used to prepare poly(vinyl chloride), a plastic in insulation,pipes, and bottles. Chloroethane (ethyl chloride) is a local anesthetic.Why is the C–Cl bond in vinyl chloride stronger than the C–Cl bond inchloroethane?
The compound oxygen difluoride is quite reactive, giving oxygen and HF when treated with water:
OF2(g) + H2O(g) → O2(g) + 2HF(g)
ΔE°rxn = –318 kJ
Using bond energies, calculate the bond dissociation energy of the O–F bond in OF2.
Average Bond Energies (kJ/mol)
Picture
O–F bond dissociation energy = _____kJ/mol
The bond energy of C2 is 599 kJ/mol, the bond distance is 110 pm. Take a rough estimate of the Coulomb repulsion in doubly ionized C2 (i.e., C22+). How far would the C-C bond have to stretch for the Coulomb repulsion to be less than the bond energy in neutral C2? Do you think that the C22+ molecule will still be stable?
Chapter 6 Solutions
Bundle: Principles of Modern Chemistry, 8th + OWLv2, 1 term (6 months) Printed Access Card
Ch. 6 - Determine the number of nodes along the...Ch. 6 - Determine the number of nodes along the...Ch. 6 - Sketch the shape of each of the molecular...Ch. 6 - Sketch the shape of each of the molecular...Ch. 6 - Compare the electron density in the 1g and 1u*...Ch. 6 - Explain why 1g is the ground state for H2+ . By...Ch. 6 - Prob. 7PCh. 6 - Predict the ground electronic state of the He22+...Ch. 6 - Prob. 9PCh. 6 - Prob. 10P
Ch. 6 - Without consulting tables of data, predict which...Ch. 6 - Without consulting tables of data, predict which...Ch. 6 - Without consulting tables of data, on the same...Ch. 6 - Without consulting tables of data, on the same...Ch. 6 - Suppose we supply enough energy to H2 to remove...Ch. 6 - Suppose we supply enough energy to He2+ to remove...Ch. 6 - Prob. 17PCh. 6 - When one electron is added to an oxygen molecule,...Ch. 6 - Predict the valence electron configuration and the...Ch. 6 - Predict the valence electron configuration and the...Ch. 6 - Prob. 21PCh. 6 - For each of the following valence electron...Ch. 6 - For each of the electron configurations in Problem...Ch. 6 - For each of the electron configurations in Problem...Ch. 6 - Following the pattern of Figure 6.21, work out the...Ch. 6 - Following the pattern of Figure 6.21, work out the...Ch. 6 - The bond length of the transient diatomic molecule...Ch. 6 - The compound nitrogen oxide (NO) forms when the...Ch. 6 - What would be the electron configuration for a HeH...Ch. 6 - The molecular ion HeH+ has an equilibrium bond...Ch. 6 - Prob. 31PCh. 6 - Predict the ground state electronic configuration...Ch. 6 - The bond dissociation energies for the species NO,...Ch. 6 - The ionization energy of CO is greater than that...Ch. 6 - Photoelectron spectra were acquired from a sample...Ch. 6 - Photoelectron spectra were acquired from a sample...Ch. 6 - Prob. 37PCh. 6 - From the n=0 peaks in the photoelectron spectrum...Ch. 6 - The photoelectron spectrum of HBr has two main...Ch. 6 - The photoelectron spectrum of CO has four major...Ch. 6 - Write simple valence bond wave functions for the...Ch. 6 - Write simple valence bond wave functions for the...Ch. 6 - Both the simple VB model and the LCAO method...Ch. 6 - Both the simple VB model and the LCAO method...Ch. 6 - Write simple valence bond wave functions for...Ch. 6 - Write simple valence bond wave functions for...Ch. 6 - Write simple valence bond wave functions for the...Ch. 6 - Write simple valence bond wave functions for the...Ch. 6 - Formulate a localized bond picture for the amide...Ch. 6 - Formulate a localized bond picture for the...Ch. 6 - Prob. 51PCh. 6 - Draw a Lewis electron dot diagram for each of the...Ch. 6 - Describe the hybrid orbitals on the chlorine atom...Ch. 6 - Describe the hybrid orbitals on the chlorine atom...Ch. 6 - The sodium salt of the unfamiliar orthonitrate ion...Ch. 6 - Describe the hybrid orbitals used by the carbon...Ch. 6 - Describe the bonding in the bent molecule NF2 ....Ch. 6 - Describe the bonding in the bent molecule OF2 ....Ch. 6 - The azide ion (N3) is a weakly bound molecular...Ch. 6 - Formulate the MO structure of (NO2+) for localized...Ch. 6 - Discuss the nature of the bonding in the nitrite...Ch. 6 - Discuss the nature of the bonding in the nitrate...Ch. 6 - The pyridine molecule (C5H5N) is obtained by...Ch. 6 - For each of the following molecules, construct the...Ch. 6 - (a) Sketch the occupied MOs of the valence shell...Ch. 6 - Calcium carbide (CaC2) is an intermediate in the...Ch. 6 - The B2 molecule is paramagnetic; show how this...Ch. 6 - The Be2 molecule has been detected experimentally....Ch. 6 - Prob. 69APCh. 6 - The molecular ion HeH+ has an equilibrium bond...Ch. 6 - The MO of the ground state of a heteronuclear...Ch. 6 - The stable molecular ion H3+ is triangular, with...Ch. 6 - According to recent spectroscopic results,...Ch. 6 - trans-tetrazene (N4H4) consists of a chain of four...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Light of appropriate wavelength can break chemical bonds. Light having λ < 240 nm can dissociate gaseous O2. It requires light with λ < 819 nm to dissociate gaseous H2O2 to 2 OH. Assume that all of the photon energy is used solely for these dissociations. (a) Calculate the energy required to dissociate (i) O2 and (ii) H2O2. (b) Consider the results of part (a). How well do they correlate with the Lewis structures of O2 and H2O2? Explain your answer.arrow_forwardTwo useful organic compounds that contain Cl atoms are vinyl chloride (CH2=CHCl) and chloroethane (CH3CH2Cl). Vinyl chloride is the starting material used to prepare poly(vinyl chloride), a plastic in insulation, pipes, and bottles. Chloroethane (ethyl chloride) is a local anesthetic. Why is the C–Cl bond in vinyl chloride stronger than the C–Cl bond in chloroethane?arrow_forwardThe dipole moment of gaseous Ag – Cl is ? = 6.08 D, and the bond distance is r(Ag − Cl) = 228. 1 pm. Calculate the percent ionic character for this bond in the gas phase. In solid form it is however, found the following values for the two silver halides Ag − CL and Ag − F: See image Explain why solid silver chloride is sparingly soluble in water, while solid silver fluoride is moderately soluble B) Explain why solid silver chloride is sparingly soluble in water, while solid silver fluoride is moderately soluble Given extra information: Formal charge: ?? = ??? – (??? + ???); where ??? = valence electrons in free atom, ???= free-pair electrons, ??? = number of bonds to the atom. The elementary charge: ? = 1.6022 × 10−19 C.1 Debye (?)= 3.3356 × 10−30 C × m. The dipole moment has definition: ? = ? × ?, where ? is partialcharge in Coulomb (?), ? is the bond distance (?). Picometer: 1 ?? = 1 × 10−12arrow_forward
- Draw a lewis structure for this reaction.arrow_forwardWhich of the following bonds is most polar: S¬Cl, S¬Br, Se¬Cl,or Se¬Br?arrow_forwardThe conversion of graphite into diamond is an endothermic reaction (AH = +3 kJ mol-1). C(graphite) → C(diamond) 1 The enthalpy change of atomisation of diamond is smaller than that of graphite. The bond energy of the C-C bonds in graphite is greater than that in diamond. 2 The enthalpy change of combustion of diamond is greater than that of graphite. 3 Which statements are correct? A 1, 2 and 3 B 1 and 2 only C 2 and 3 only D 1 onlyarrow_forward
- Selenium tetrafluoride is produced from a reaction of elemental Se with chlorine trifluoride according to the balanced chemical equation: 3 Se(g) + 4 CIF3(g) → 3 SEF4(g) + 2 Cl2(g) AHrxn = -1874 kJ Using AHrxn and the table of bond energies below, determine the bond energy of the Se-F bonds in SeF4. Note that all bonds in the reactants and products are single bonds. Bond Bond Energy (k.J/mol) CI-F 253 CI-CI 243 The units are kJ/mol. Do not include units in your answer. Scientific notation is optional. To write scientific notation in Canvas, type "e" to replace "x 10". For example, "1 x 1014" is written "1e+14" in Canvas.arrow_forwardThe bond dissociation energies for AA, BB, and AB are 6.17, 7.69, and 7.28 eV, respectively. Calculate the difference the electronegativities of A and B on the Pauling scale. Select one:arrow_forwardGive detailed Solution with explanation neededarrow_forward
- An carbon-to-oxygen single bond (i.e. C-O) has a bond energy of 358 kJ/mol and an carbon-to-oxygen double bond (i.e. C=O) has a bond energy of 749 kJ/mol. Estimate the value of the carbon-to-oxygen bond energy in the carbonate anion, CO32— . Hint: draw the Lewis structure of CO32— , consider resonance and determine which type of bonds it has. Because of the resonance, the bond between C and O will be somewhere in between the single and double bond. Group of answer choices 1107 kJ/mol 358 kJ/mol 488 kJ/mol 928 kJ/mol 1465 kJ/mol 618 kJ/mol 749 kJ/mol 554 kJ/molarrow_forwardBased on the bond energies for the reaction below, what is the enthalpy of the reaction? HC≡CH (g) + 5/2 O₂ (g) → 2 CO₂ (g) + H₂O (g)arrow_forwardBased on the results of the solubility tests and chemical tests, what is the most probable structure of C4H8? Draw the compound using line-bond formula or lewis structure.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY