Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5S.2P
To determine
The interior convection coefficient.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, ka = 20 W/m · Kand ke = 50 W /m · K, and
known thickness, LA = 300 mm and Lc = 150 mm. The third material, B, which is sandwiched between materials A and C, is of known thickness,
Lg = 150 mm, but unknown thermal conductivity kg.
ka ke
Air
T., h
Under steady-state operating conditions, measurements reveal an outer surface temperature of T, = 20°C, an inner surface temperature of T, = 600°C, and
an oven air temperature of T = 800°C. The inside convection coefficient h is known to be 25 W/m? · K. What is the value of kg?
If you could really show step by step my professor was out of town during this subject and I am struggling with this concept.
Experiment: A cooling tower uses forced air and column packing to cool downward-flowing water. Inlet water temperature and water flow rate are varied to investigate effects on outlet water temperature, outlet air temperature, and outlet air humidity. The system is first observed operating with ambient room temperature water. A heat load is then applied to the water tank, and the system response is observed. This is to simulate a power plant starting up and placing a cooling load on the cooling water supply. The aim is to compare the system response with and without the load. Data from the Experiment and the make-up water mass flow rate are both shown in the following tables below.
For the load cases, determine the net rate of water evaporation from the cooling water to the air using the equation for air flow rate. Compare this with the rate at which make-up water enters the system.
For the load cases, determine the rate of work supplied by the pump and compare it to the pump power…
Chapter 5 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 5 - Consider a thin electrical heater attached to a...Ch. 5 - The inner surface of a plane wall is insulated...Ch. 5 - A microwave oven operates on the principle that...Ch. 5 - A plate of thickness 2L, surface area As, mass M,...Ch. 5 - For each of the following cases, determine an...Ch. 5 - Steel balls 12 mm in diameter are annealed by...Ch. 5 - Consider the steel balls of Problem 5.6, except...Ch. 5 - The heat transfer coefficient for air flowing over...Ch. 5 - A solid steel sphere (AISI 1010), 300 mm in...Ch. 5 - A flaked cereal is of thickness 2L=1.2mm. The...
Ch. 5 - The base plate of an iron has a thickness of L=7mm...Ch. 5 - Thermal energy storage systems commonly involve a...Ch. 5 - A tool used for fabricating semiconductor devices...Ch. 5 - A copper sheet of thickness 2L=2mm has an initial...Ch. 5 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 5 - A thermal energy storage unit consists of a large...Ch. 5 - Small spherical particles of diameter D=50m...Ch. 5 - A spherical vessel used as a reactor for producing...Ch. 5 - Batch processes are often used in chemical and...Ch. 5 - An electronic device. such as a power transistor...Ch. 5 - Molecular electronics is an emerging field...Ch. 5 - A plane wall of a furnace is fabricated from plain...Ch. 5 - A steel strip of thickness =12mm is annealed by...Ch. 5 - In a material processing experiment conducted...Ch. 5 - Plasma spray-coating processes are often used to...Ch. 5 - The plasma spray-coating process of Problem 5.25...Ch. 5 - A chip that is of length L=5mm on a side and...Ch. 5 - Consider the conditions of Problem 5.27. In...Ch. 5 - A long wire of diameter D=1mm is submerged in an...Ch. 5 - Consider the system of Problem 5.1 where the...Ch. 5 - Shape memory alloys (SMAs) are metals that undergo...Ch. 5 - Before being injected into a furnace, pulverized...Ch. 5 - As noted in Problem 5.3, microwave ovens operate...Ch. 5 - A metal sphere of diameter D, which is at a...Ch. 5 - A horizontal structure consists of an LA=10...Ch. 5 - As permanent space stations increase in size....Ch. 5 - Thin film coatings characterized by high...Ch. 5 - A long. highly polished aluminum rod of diameter...Ch. 5 - Thermal stress testing is a common procedure used...Ch. 5 - The objective of this problem is to develop...Ch. 5 - In thermomechanical data storage, a processing...Ch. 5 - The melting of water initially at the fusion...Ch. 5 - Consider the series solution, Equation 5.42, for...Ch. 5 - Consider the one-dimensional wall shown in the...Ch. 5 - Copper-coated, epoxy-tilled fiberglass circuit...Ch. 5 - Circuit boards are treated by heating a stack of...Ch. 5 - A constant-property, one-dimensional plane slab of...Ch. 5 - Referring to the semiconductor processing tool of...Ch. 5 - Annealing is a process by which steel is reheated...Ch. 5 - Consider an acrylic sheet of thickness L=5mm that...Ch. 5 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 5 - Steel is sequentially heated and cooled (annealed)...Ch. 5 - Stone mix concrete slabs are used to absorb...Ch. 5 - During transient operation, the steel nozzle of a...Ch. 5 - Two plates of the same material and thickness L...Ch. 5 - In a tempering process, glass plate, which is...Ch. 5 - The strength and stability of tires may be...Ch. 5 - A plastic coating is applied to wood panels by...Ch. 5 - A long rod of 60-mm diameter and thermophysical...Ch. 5 - A long cylinder of 30-mm diameter, initially at a...Ch. 5 - A long pyroceram rod of diameter 20 mm is clad...Ch. 5 - A long rod 40 mm in diameter, fabricated from...Ch. 5 - A cylindrical stone mix concrete beam of diameter...Ch. 5 - A long plastic rod of 30-mm diameter...Ch. 5 - As part of a heat treatment process, cylindrical,...Ch. 5 - In a manufacturing process, long rods of different...Ch. 5 - The density and specific heat of a particular...Ch. 5 - In heat treating to harden steel ball bearings...Ch. 5 - A cold air chamber is proposed for quenching steel...Ch. 5 - Stainless steel (AISI 304) ball bearings. which...Ch. 5 - A sphere 30 mm in diameter initially at 800K is...Ch. 5 - Spheres A and B are initially at 800K. and they...Ch. 5 - Spheres of 40-mm diameter heated to a uniform...Ch. 5 - To determine which parts of a spider's brain are...Ch. 5 - Consider the packed bed operating conditions of...Ch. 5 - Two large blocks of different materials. such as...Ch. 5 - A plane wall of thickness 0.6 m (L=0.3m) is made...Ch. 5 - Asphalt pavement may achieve temperatures as high...Ch. 5 - A thick steel slab...Ch. 5 - A tile-iron consists of a massive plate maintained...Ch. 5 - A simple procedure for measuring surface...Ch. 5 - An insurance company has hired you as a consultant...Ch. 5 - A procedure for determining the thermal...Ch. 5 - A very thick slab with thermal diffusivity...Ch. 5 - Standards for firewalls may be based on their...Ch. 5 - It is well known that, although two materials are...Ch. 5 - Two stainless steel plates...Ch. 5 - Special coatings are often formed by depositing...Ch. 5 - When a molten metal is cast in a mold that is a...Ch. 5 - Joints of high quality can be formed by friction...Ch. 5 - A rewritable optical disc (DVD) is formed by...Ch. 5 - Ground source heat pumps operate by using the...Ch. 5 - To enable cooking a wider range of foods in...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - The structural components of modem aircraft are...Ch. 5 - Consider the plane wall of thickness 2L, the...Ch. 5 - Problem 4.9 addressed radioactive wastes stored...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - Prob. 5.107PCh. 5 - Prob. 5.108PCh. 5 - A thin rod of diameter D is initially in...Ch. 5 - A one-dimensional slab of thickness 2L is...Ch. 5 - Prob. 5.114PCh. 5 - Prob. 5.115PCh. 5 - A molded plastic product...Ch. 5 - Prob. 5.133PCh. 5 - A thin circular disk is subjected to induction...Ch. 5 - Two very long (in the direction normal to the...Ch. 5 - Prob. 5S.2PCh. 5 - Prob. 5S.3PCh. 5 - Estimate the time required to cook a hot dog in...Ch. 5 - Prob. 5S.7PCh. 5 - Prob. 5S.9PCh. 5 - Prob. 5S.10PCh. 5 - Prob. 5S.11PCh. 5 - Prob. 5S.13P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3.9 The heat transfer coefficients for the flow of 26.6°C air over a sphere of 1.25 cm in diameter are measured by observing the temperature-time history of a copper ball the same dimension. The temperature of the copper ball was measured by two thermocouples, one located in the center and the other near the surface. The two thermocouples registered, within the accuracy of the recording instruments, the same temperature at any given instant. In one test run, the initial temperature of the ball was 66°C, and the temperature decreased by 7°C in 1.15 min. Calculate the heat transfer coefficient for this case.arrow_forwardThe composite wall of an oven consists of three materials, two of which are of knownthermal conductivity, kA = 20 W/m – K and kC = 50 W/m – K, and known thickness, LA =0.30 m and LC = 0.15 m. The third material, B, which is sandwiched between materialsA and C, is of known thickness, LB = 0.15 m, but unknown thermal conductivity kB.Under steady – state operating conditions, measurements reveal an outer surfacetemperature of 600 oC, and an oven air temperature of 800 oC. The inside convectioncoefficient h is known to be 25 W/m2 – K. total rate of heat transfer = 550 W/m2.What is the value of kB?arrow_forwardRadioactive wastes are packed in a thin-walled spherical container. The wastes generate thermal energy nonuniformly according to the relation ġ = ġ, 1–(r/r.)* | where ġ is the local rate of energy generation per unit volume, ġ, is a constant, and r, is the radius of the container. Steady- state conditions are maintained by submerging the container in a liquid that is at T, and provides a uniform convection coefficient h. Coolant T, h - ġ = 4, [1– (rlr,²] 11arrow_forward
- 5.8 The heat transfer coefficient for air flowing over a sphere is to be determined by observing the temperature-time history of a sphere fabricated from pure copper. The sphere, which is 12.7 mm in diameter, is at 66°C before it is inserted into an airstream having a temperature of 27°C. A thermocouple on the outer surface of the sphere indicates 55°C 69 s after the sphere is inserted into the airstream. Assume and then justify that the sphere behaves as a spacewise isothermal object and calculate the heat transfer coefficient.arrow_forwardThe TPD method measures temperature elevations in a tissue region during a heating pulse and its later temperature decay after the pulse. It is then using the Pennes bioheat equation to perform a curve fitting to determine the local blood perfusion rate. If the TPD probe is placed in the vicinity of very large blood vessel, will the TPD technique provide an accurate measurement of the local blood perfusion in the vicinity of this large blood vessel? Explain briefly. (Hint: Is the Pennes bioheat equation accurate surrounding a large blood vessel?)arrow_forwardAnswer correctly and quickly as possible please.arrow_forward
- The composite wall of an oven consists of three materials, two of which has known thermal conductivity, kA = 40 W/m.K and kc = 30 W/m.K. The third material, B, sandwiched between these two has an unknown thermal conductivity kB. The thickness of the materials LA = 0.2 m, LB = Lc = 0.1 m. Under steady-state operating conditions, measurements reveal an outer surface temperature Ts,o = 40°C, an inner surface temperature Tsi = 550°C, and oven air temperature To = 700°C. The inside convection coefficient h = 25 W/m2.K. (a) Draw the thermal circuit and temperature profile across the wall. (b) Determine the heat flux through the wall. %3D %3D %3D (c) Find the value of kB. Draw sketch and show all calculations.arrow_forwardNote:- • Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism. • Answer completely. • You will get up vote for sure.arrow_forwardany help would be much appreciated thanksarrow_forward
- 16.7 with an inner layer of diatomaceous earth, 40 mm thick, and an outer layer of 85% magnesia, 25 mm thick. The inside surface of the pipe is at the steam temperature, and the heat transfer coefficient for the outside surface of the lagging is 17 W/m² K. The thermal conductivities of diatomaceous earth and 85% magnesia are 0.09, and 0.06 W/m K respectively. Neglecting radiation, and the thermal resistance of the pipe A steam main of 150 mm outside diameter containing wet steam at 28 bar is insulated Problems wall, calculate the rate of heat loss per unit length of the pipe and the temperature of the outside surface of the lagging, when the room temperature is 20°C.arrow_forwardI need the answer as soon as possiblearrow_forwardWhen operating at steady-state in a 250C room, the surface temperature of a 20 W incandescent light bulb is 1250C. Approximate the bulb as a 40 mm diameter sphere to estimate the rate of heat transfer from the bulb via convection. Air properties: k-0.030 W/m-K Spear surface area: S=4tr²³ v-20.92x10" m²/s Sphere volume: V=(4/3)Tr Pr-0.700arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license