Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.106P
Derive an expression for the ratio of the total energy transferred from the isothermal surface of a sphere to the interior of the sphere
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
i need the answer quickly
34
Need A, B, C
3. EDL over an infinite cylinder: Consider a infinitely long cylinder of radius Ro. The cylinder is negatively
charged at its surface. The cylinder is in contact with an symmetric electrolyte solution. Assuming
axisymmetry and low potential (i.e. dimensionless y « 1), obtain a linear differential equation for the
dimensionless potential. Solve the resulting dimensionless problem for the potential distribution. Hint:
The governing equation can be modified to Bessel's equation.
Chapter 5 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 5 - Consider a thin electrical heater attached to a...Ch. 5 - The inner surface of a plane wall is insulated...Ch. 5 - A microwave oven operates on the principle that...Ch. 5 - A plate of thickness 2L, surface area As, mass M,...Ch. 5 - For each of the following cases, determine an...Ch. 5 - Steel balls 12 mm in diameter are annealed by...Ch. 5 - Consider the steel balls of Problem 5.6, except...Ch. 5 - The heat transfer coefficient for air flowing over...Ch. 5 - A solid steel sphere (AISI 1010), 300 mm in...Ch. 5 - A flaked cereal is of thickness 2L=1.2mm. The...
Ch. 5 - The base plate of an iron has a thickness of L=7mm...Ch. 5 - Thermal energy storage systems commonly involve a...Ch. 5 - A tool used for fabricating semiconductor devices...Ch. 5 - A copper sheet of thickness 2L=2mm has an initial...Ch. 5 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 5 - A thermal energy storage unit consists of a large...Ch. 5 - Small spherical particles of diameter D=50m...Ch. 5 - A spherical vessel used as a reactor for producing...Ch. 5 - Batch processes are often used in chemical and...Ch. 5 - An electronic device. such as a power transistor...Ch. 5 - Molecular electronics is an emerging field...Ch. 5 - A plane wall of a furnace is fabricated from plain...Ch. 5 - A steel strip of thickness =12mm is annealed by...Ch. 5 - In a material processing experiment conducted...Ch. 5 - Plasma spray-coating processes are often used to...Ch. 5 - The plasma spray-coating process of Problem 5.25...Ch. 5 - A chip that is of length L=5mm on a side and...Ch. 5 - Consider the conditions of Problem 5.27. In...Ch. 5 - A long wire of diameter D=1mm is submerged in an...Ch. 5 - Consider the system of Problem 5.1 where the...Ch. 5 - Shape memory alloys (SMAs) are metals that undergo...Ch. 5 - Before being injected into a furnace, pulverized...Ch. 5 - As noted in Problem 5.3, microwave ovens operate...Ch. 5 - A metal sphere of diameter D, which is at a...Ch. 5 - A horizontal structure consists of an LA=10...Ch. 5 - As permanent space stations increase in size....Ch. 5 - Thin film coatings characterized by high...Ch. 5 - A long. highly polished aluminum rod of diameter...Ch. 5 - Thermal stress testing is a common procedure used...Ch. 5 - The objective of this problem is to develop...Ch. 5 - In thermomechanical data storage, a processing...Ch. 5 - The melting of water initially at the fusion...Ch. 5 - Consider the series solution, Equation 5.42, for...Ch. 5 - Consider the one-dimensional wall shown in the...Ch. 5 - Copper-coated, epoxy-tilled fiberglass circuit...Ch. 5 - Circuit boards are treated by heating a stack of...Ch. 5 - A constant-property, one-dimensional plane slab of...Ch. 5 - Referring to the semiconductor processing tool of...Ch. 5 - Annealing is a process by which steel is reheated...Ch. 5 - Consider an acrylic sheet of thickness L=5mm that...Ch. 5 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 5 - Steel is sequentially heated and cooled (annealed)...Ch. 5 - Stone mix concrete slabs are used to absorb...Ch. 5 - During transient operation, the steel nozzle of a...Ch. 5 - Two plates of the same material and thickness L...Ch. 5 - In a tempering process, glass plate, which is...Ch. 5 - The strength and stability of tires may be...Ch. 5 - A plastic coating is applied to wood panels by...Ch. 5 - A long rod of 60-mm diameter and thermophysical...Ch. 5 - A long cylinder of 30-mm diameter, initially at a...Ch. 5 - A long pyroceram rod of diameter 20 mm is clad...Ch. 5 - A long rod 40 mm in diameter, fabricated from...Ch. 5 - A cylindrical stone mix concrete beam of diameter...Ch. 5 - A long plastic rod of 30-mm diameter...Ch. 5 - As part of a heat treatment process, cylindrical,...Ch. 5 - In a manufacturing process, long rods of different...Ch. 5 - The density and specific heat of a particular...Ch. 5 - In heat treating to harden steel ball bearings...Ch. 5 - A cold air chamber is proposed for quenching steel...Ch. 5 - Stainless steel (AISI 304) ball bearings. which...Ch. 5 - A sphere 30 mm in diameter initially at 800K is...Ch. 5 - Spheres A and B are initially at 800K. and they...Ch. 5 - Spheres of 40-mm diameter heated to a uniform...Ch. 5 - To determine which parts of a spider's brain are...Ch. 5 - Consider the packed bed operating conditions of...Ch. 5 - Two large blocks of different materials. such as...Ch. 5 - A plane wall of thickness 0.6 m (L=0.3m) is made...Ch. 5 - Asphalt pavement may achieve temperatures as high...Ch. 5 - A thick steel slab...Ch. 5 - A tile-iron consists of a massive plate maintained...Ch. 5 - A simple procedure for measuring surface...Ch. 5 - An insurance company has hired you as a consultant...Ch. 5 - A procedure for determining the thermal...Ch. 5 - A very thick slab with thermal diffusivity...Ch. 5 - Standards for firewalls may be based on their...Ch. 5 - It is well known that, although two materials are...Ch. 5 - Two stainless steel plates...Ch. 5 - Special coatings are often formed by depositing...Ch. 5 - When a molten metal is cast in a mold that is a...Ch. 5 - Joints of high quality can be formed by friction...Ch. 5 - A rewritable optical disc (DVD) is formed by...Ch. 5 - Ground source heat pumps operate by using the...Ch. 5 - To enable cooking a wider range of foods in...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - The structural components of modem aircraft are...Ch. 5 - Consider the plane wall of thickness 2L, the...Ch. 5 - Problem 4.9 addressed radioactive wastes stored...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - Prob. 5.107PCh. 5 - Prob. 5.108PCh. 5 - A thin rod of diameter D is initially in...Ch. 5 - A one-dimensional slab of thickness 2L is...Ch. 5 - Prob. 5.114PCh. 5 - Prob. 5.115PCh. 5 - A molded plastic product...Ch. 5 - Prob. 5.133PCh. 5 - A thin circular disk is subjected to induction...Ch. 5 - Two very long (in the direction normal to the...Ch. 5 - Prob. 5S.2PCh. 5 - Prob. 5S.3PCh. 5 - Estimate the time required to cook a hot dog in...Ch. 5 - Prob. 5S.7PCh. 5 - Prob. 5S.9PCh. 5 - Prob. 5S.10PCh. 5 - Prob. 5S.11PCh. 5 - Prob. 5S.13P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. Determine expressions for q(m-1,n)→(m,n), q(m+1,n)→(m,n), q(m,n+1)→(m,n) and q(m,n-1)-(m,n), for conduction associated with a control volume that spans two different materials. There is no contact resistance at the interface between the materials. The control volumes are L units long into the page. Write the finite difference equation under steady-state conditions for node (m, n). Answer: N/A T→ T Ay Material A KA (m, n + 1) i (m1, n) (m, n) (m + 1, n) Material B (m, n1) | KBarrow_forwardThe types of scaling transformation are stretch and enlarging O uniform and nonuniform O miniaturizing and enlarging O non of the abovearrow_forwardQ) For figures shown below, use energy equivalent method to derive the differential equation governing the system using the indicated generalized coordinates. E ·L2 Xarrow_forward
- Use the Finite Volume method to find general nodal equations for the CV of the geometry. Use the implicit method to find the rate of change of energy storage in the CV.arrow_forwardConsider a flat plate or a plane wall with a thickness L and a long cylinder of radius r0. Both of these are made of materials such that they can be treated as lumped capacitances (Bi0.1). Show that in each case, the characteristic length lc, defined lc=(V/As), can be approximated as (L/2) and (ro/2), respectively.arrow_forwardThe amount of heat conducted through a wall of length r is given by Fourier's Law:. CONDUCTION RATE EQUATION T FOURIER'S LAW q, = -k A dT dx T, >T, where q, is the heat flux, k is a proportionality factor, Ais the wall's cross-sectional area, and 4 is the temperature gradient throughout the wall. Our friend Matt Labb wants to find T2 (temperature of the wall's rightmost edge) given q,, k, and A. Is this possible? If so, briefly explain how to find Tp. If not, briefly explain why.arrow_forward
- Solve it correctly please. I will rate accordingly with 4votes.arrow_forwardLet's assume that the outdoor temperature in your region was 1 C on 26.12.2002. Let's assume that you use a 2088 W heater in the room in order to keep the indoor temperature of the room at 20 ° C. In the meantime, a 68 W light bulb for lighting, a computer you use to solve this question and load it into the system (let's assume it consumes 217 W of energy), you and your two friends (three people in total) are in the room to assist you in solving the questions. A person radiates 45 J of heat per second to his environment. When you consider all these conditions, calculate the exergy destruction caused by the heat loss from the exterior wall of your room.arrow_forwardObtain the solution x(t) of the following differential equation:arrow_forward
- 4.41 Solve the steady-state, 2-D heat conduction equation in the unit square, 0arrow_forwardWhen is weak form called variational form state the contition Please answer with respect to finite elemental methodarrow_forward2. One of the strengths of numerical methods is their ability to handle complex boundary conditions. In the sketch, the boundary condition changes from specified heat flux qs"(into the domain) to convection, at the location of the node (m, n). Write the steady-state, two-dimensional finite difference equation at this node. Δ.Χ m, n h, T∞ Ayarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Pressure Vessels Introduction; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=Z1J97IpFc2k;License: Standard youtube license