
Principles of Modern Chemistry
8th Edition
ISBN: 9781305079113
Author: David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 32P
Interpretation Introduction
Interpretation:The Zeff of chlorine atom for all orbital should be determined.
Concept introduction: A particular electron is shielded by inner electrons that are near nucleus by full charge Z of nucleus by effectively canceling some of the positive nuclear charge. So the net reduced nuclear charge experienced by a particular electron, due to presence of inner electrons is called Zeff . The formula for effective nuclear charge Zeff is as follows:
Zeff=Z−S
Where,
- Zis nuclear charge.
- S is shielding or screening constant for an orbital with principal quantum number n .
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).
Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).
Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.
Chapter 5 Solutions
Principles of Modern Chemistry
Ch. 5 - Which of the following combinations of quantum...Ch. 5 - Which of the following combinations of quantum...Ch. 5 - Label the orbitals described by each of the...Ch. 5 - Label the orbitals described by each of the...Ch. 5 - Estimate the probability of finding an electron...Ch. 5 - Using Table 5.2, write down the mathematical...Ch. 5 - How many radial nodes and how many angular nodes...Ch. 5 - How many radial nodes and how many angular nodes...Ch. 5 - Use the mathematical expression for the 2pz wave...Ch. 5 - (a) Use the radial wave function for the 3p...
Ch. 5 - Calculate the average distance of the electron...Ch. 5 - The helium ion He+ is a one-electron system whose...Ch. 5 - Spectroscopic studies show that Li can have...Ch. 5 - Spectroscopic studies of Li also show that...Ch. 5 - Spectroscopic studies show that Na can have...Ch. 5 - Using data from Problems 13 and 15, calculate the...Ch. 5 - Give the ground-state electron configurations of...Ch. 5 - Give the ground-state electron configurations of...Ch. 5 - Prob. 19PCh. 5 - Write ground-state electron configurations for the...Ch. 5 - Identify the atom or ion corresponding to each of...Ch. 5 - Identify the atom or ion corresponding to each of...Ch. 5 - Predict the atomic number of the (as yet...Ch. 5 - (a) Predict the atomic number of the (as yet...Ch. 5 - Suppose that the spin quantum number did not...Ch. 5 - Suppose that the spin quantum number had three...Ch. 5 - Photoelectron spectra of mercury (Hg) atoms...Ch. 5 - Quantum mechanics predicts that the energy of the...Ch. 5 - Prob. 29PCh. 5 - Photoelectron spectroscopy studies of silicon...Ch. 5 - Photoelectron spectroscopy studies have determined...Ch. 5 - Prob. 32PCh. 5 - For each of the following pairs of atoms or ions,...Ch. 5 - For each of the following pairs of atoms or ions,...Ch. 5 - Predict the larger ion in each of the following...Ch. 5 - Prob. 36PCh. 5 - The first ionization energy of helium is...Ch. 5 - The energy needed to remove one electron from a...Ch. 5 - Without consulting any tables, arrange the...Ch. 5 - Both the electron affinity and the ionization...Ch. 5 - The cesium atom has the lowest ionization energy,...Ch. 5 - Until recently, it was thought that Ca was...Ch. 5 - In the hydrogen atom, the transition from the 2p...Ch. 5 - The energy needed to ionize an atom of element X...Ch. 5 - Suppose an atom in an excited state can return to...Ch. 5 - For the Li atom, the energy difference between the...Ch. 5 - How does the 3dxy orbital of an electron in O7+...Ch. 5 - The wave function of an electron in the lowest...Ch. 5 - An atom of sodium has the electron configuration...Ch. 5 - (a) The nitrogen atom has one electron in each of...Ch. 5 - Chromium(IV) oxide is used in making magnetic...Ch. 5 - Prob. 52APCh. 5 - Arrange the following seven atoms or ions in order...Ch. 5 - Which is higher, the third ionization energy of...Ch. 5 - The outermost electron in an alkali-metal atom is...Ch. 5 - In two-photon ionization spectroscopy, the...Ch. 5 - For the H atom, the transition from the 2p state...Ch. 5 - (a) Give the complete electron configuration...Ch. 5 - What experimental evidence does the periodic table...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- Draw the line-angle formula of cis-2,3-dichloro-2-pentene. Then, draw the line-angle formula of trans-2,3-dichloro-2-pentene below. Draw the dash-wedge formula of cis-1,3-dimethylcyclohexane. Then, draw the dash-wedge formula of trans-1,3-dimethylcyclohexane below.arrow_forwardRecord the amounts measured and calculate the percent yield for Part 2 in the table below. Dicyclopentadiene measured in volume Cyclopentadiene measured in grams 0 Measured Calculated Mol Yield Mass (g) or Volume (mL) Mass (g) or Volume (ml) 0.6 2.955 Part 2 Measurements and Results Record the amounts measured and calculate the percent yield for Part 2 in the table below. 0.588 0.0044 2.868 0.0434 N/A Table view List view Measured Calculated Mol $ Yield Melting Point (C) Mass (g) or Volume (ml) Mass (g) or Volume (ml.) Cyclopentadiene 0.1 0.08 0.001189 measured in volume Maleic Anhydride 0.196 N/A cis-norbornene-5,6-endo- dicarboxylic anhydride 0.041 0.0002467 N/A N/A N/A 0.002 N/A N/A 128arrow_forwardDraw the condensed structural formula and line-angle formula for each: 2,3-dimethylheptane 3-bromo-2-pentanol 3-isopropyl-2-hexene 4-chlorobutanoic acidarrow_forward
- Record the IUPAC names for each of the structures shown below. a) b) c) OH d) OH e)arrow_forwardA solution of 14 g of a nonvolatile, nonelectrolyte compound in 0.10 kg of benzene boils at 81.7°C. If the BP of pure benzene is 80.2°C and the K, of benzene is 2.53°C/m, calculate the molar mass of the unknown compound. AT₁ = Km (14)arrow_forwardPlease help me answer the following questions. My answers weren't good enough. Need to know whyy the following chemicals were not used in this experiment related to the melting points and kf values. For lab notebook not a graded assignments.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning