Quantum mechanics predicts that the energy of the ground state of the H atom is − 13.6 e V . Insight into the magnitude of this quantity is gained by considering several methods by which it can be measured. (a) Calculate the longest wavelength of light that will ionize H atoms in their ground state. (b) Assume the atom is ionized by collision with an electron that transfers all its kinetic energy to the atom in the ionization process. Calculate the speed of the electron before the collision. Express your answer in meters per second ( m s − 1 ) and miles per hour ( miles h − 1 ) . (c) Calculate the temperature required to ionize a H atom in its ground state by thermal excitation. (Hint: Recall the criterion for thermal excitation of an oscillator in Planck’s theory of blackbody radiation is that h v ≈ k B T .)
Quantum mechanics predicts that the energy of the ground state of the H atom is − 13.6 e V . Insight into the magnitude of this quantity is gained by considering several methods by which it can be measured. (a) Calculate the longest wavelength of light that will ionize H atoms in their ground state. (b) Assume the atom is ionized by collision with an electron that transfers all its kinetic energy to the atom in the ionization process. Calculate the speed of the electron before the collision. Express your answer in meters per second ( m s − 1 ) and miles per hour ( miles h − 1 ) . (c) Calculate the temperature required to ionize a H atom in its ground state by thermal excitation. (Hint: Recall the criterion for thermal excitation of an oscillator in Planck’s theory of blackbody radiation is that h v ≈ k B T .)
Quantum mechanics predicts that the energy of the ground state of the H atom is
−
13.6
e
V
. Insight into the magnitude of this quantity is gained by considering several methods by which it can be measured.
(a) Calculate the longest wavelength of light that will ionize H atoms in their ground state.
(b) Assume the atom is ionized by collision with an electron that transfers all its kinetic energy to the atom in the ionization process. Calculate the speed of the electron before the collision. Express your answer in meters per second
(
m s
−
1
)
and miles per hour
(
miles h
−
1
)
.
(c) Calculate the temperature required to ionize a H atom in its ground state by thermal excitation. (Hint: Recall the criterion for thermal excitation of an oscillator in Planck’s theory of blackbody radiation is that
h
v
≈
k
B
T
.)
(f) SO:
Best Lewis Structure
3
e group geometry:_
shape/molecular geometry:,
(g) CF2CF2
Best Lewis Structure
polarity:
e group arrangement:_
shape/molecular geometry:
(h) (NH4)2SO4
Best Lewis Structure
polarity:
e group arrangement:
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
Sketch (with angles):
1.
Problem Set 3b
Chem 141
For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing
bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the
molecule is polar or non-polar (iv)
(a) SeF4
Best Lewis Structure
e group arrangement:_
shape/molecular geometry:
polarity:
(b) AsOBr3
Best Lewis Structure
e group arrangement:_
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
(c) SOCI
Best Lewis Structure
2
e group arrangement:
shape/molecular geometry:_
(d) PCls
Best Lewis Structure
polarity:
e group geometry:_
shape/molecular geometry:_
(e) Ba(BrO2):
Best Lewis Structure
polarity:
e group arrangement:
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
Sketch (with angles):
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY