Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 2CQ
Your hands are wet, and the restroom towel dispenser is empty. What do you do to get drops of water off your hands? How does the motion of the drops exemplify one of Newton’s laws? Which one?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How do you find the normal force
between a table with a mass of 35 kg and
the floor?
(Assume that normal force and gravity are
the only two vertical forces.)
Your answer:
The normal force is the same
number - 35 kg.
Multiply the mass by the coefficient
of friction.
Multiple the mass by gravitational
acceleration (g = 9.8 m/s²)
The normal force is zero because
the table isn't moving vertically.
The normal force is 9.8 N because it
is on Earth.
Clear answer
A 0.75-kg cart is pulled along a horizontal track by a rope. The rope makes an angle
of 30 degrees to the horizontal.
Your friend says that the normal component of the force the track exerts on the cart
is 7.5 N because mg = (0.75kg) (¹0N) = 7.5N.
Do you agree with your friend? Use a force diagram and Newton's 2nd Law to
explain why.
A person whose weight is 516 N is being pulled up vertically by a rope from the bottom of a cave that is 30.5 m deep. The maximum tension that the rope can withstand without breaking is 593 N. What is the shortest time, starting from rest, in which the person can be brought out of the cave?
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student with a mass of 68 kg gets on a ferris wheel that rotates at a constant speed. When the ferris wheel reaches its top point, the reaction force applied by the seat to the student is 556 N. What is the reaction force the seat exerts on the student when the ferris wheel reaches its lowest point? (g = 9.8 m / s²)arrow_forwardYou have most likely been in an elevator that accelerates upward as it moves toward a higher floor. In this case, you feel heavier. In fact, if you are standing on a bathroom scale at the time, the scale measures a force having a magnitude that is greater than your weight. Therefore, you have tactile and measured evidence that leads you to believe you are heavier in this situation. Are you heavier?arrow_forwardZola (the wonder dog) is told to sit and stay on a bathroom scale that reads 150 newtons with her on it. But soon she gets bored with sitting on the scale and leaps straight up into the air with an acceleration of magnitude 2m/s2. a) What is Zola's mass? b) What is the reading on the scale when she launches herself upward?arrow_forward
- A car is travelling along a horizontal road in an easterly direction. The car has a mass of 2300 kg and the drag force (friction) acting on the car is a constant 5000 N to the west. The car is initially travelling at a speed of 10 m s‒1 and 20 s later is travelling at a speed of 14 m s‒1. What is the gravitational force on the car? What is the vertical normal (support/reaction) force acting on the car? What is the horizontal force on the cars tyres from the road?arrow_forwardYou are standing on a scale in an elevator. While the elevator is at rest, the scale reads 650 N. The elevator begins to move with a downward velocity. If the elevator is increasing in speed (speeding up), what will happen to the weight reading displayed by the scale? The scale will measure a weight equal to 650 N O The scale will measure a weight greater than 650 N O The scale will measure a weight exactly equal to 0 N The scale will measure a weight less than 650 Narrow_forwardThe figure below is for a 7 kg box on a horizontal floor. Initially, you are pushing horizontally on the box and friction is opposing you. Then, you stop pushing the box. Use g = 10 m/s2. v(m/s) 6.0 4.5 3.0 1.5 0.3 0.6 0.9 t(s) Find the gravitational force acting on the box. Find the normal force acting on the box. Assume the frictional force is constant throughout the motion and find the frictional force. Assume the frictional force is constant throughout the motion and find your pushing force. Find the displacement of the box over the entire time shown.arrow_forward
- You walk into an elevator, step onto a scale, and push the "down" button to go directly from the tenth floor to the first floor. You also recall that your normal weight is ww = 635 N If the elevator has an initial acceleration of magnitude 2.40 m/s2m/s2, what does the scale read? Express your answer in newtons.arrow_forwardAn accident victim with a broken leg is being placed in traction. The patient wears a special boot with a pulley attached to the sole. The foot and boot together have a mass of 4.0 kg, and the doctor has decided to hang a m = 6.2 kg mass from the rope. The boot is held suspended by the ropes and does not touch the bed. (Figure 1) Determine the amount of tension in the rope by using Newton’s laws to analyze the hanging mass. Assume that ϕ = 13 ∘ . Hint: If the pulleys are frictionless, which we will assume, the tension in the rope is constant from one end to the other. The net traction force needs to pull straight out on the leg. What is the proper angle θ for the upper rope? What is the net traction force pulling on the leg?arrow_forwardWhich of the following best explains the different weights of the man shown in the illustration below? Earth Moon Jupiter Sun Mass = 63.5 kg Weight = 623 N (140 lbs) Mass = 63.5 kg W eight = 103 N (23 lbs) Mass = 63.5 kg Weight = 1582 N (355 lbs) Mass = 63.5 kg Weight = 17418 N (3914 lbs) different gravitational acceleration on each planet/moon different atmospheric pressure on each planet/moon different mass of the man different force on each planet/moon different distance from the Sun for each planet/moonarrow_forward
- 7. A woman whose mass is 60 kilograms is standing on a scale in an elevator that has an initial downward velocity of 4 meters per second and is accelerating upward at 6.0 meters per second per second. What is the magnitude of the apparent weight indicated by the scale? 6.0을 a = Scalearrow_forwardTwo teams of nine members each engage in a tug of war. Each of the first team's members has an average mass of 73 kg and exerts an average force of 1350 N horizontally. Each of the second team's members has an average mass of 78 kg and exerts an average force of 1360 N horizontally. What is the acceleration (in m/s2 in the direction the heavy team is pulling) of the two teams? What is the tension (in N) in the section of rope between the teams?arrow_forwardThe International Space Station (ISS) orbits the Earth at an altitude (distance above the surface of the Earth) of 408 km, conducting various experiments in a "weightless" environment. Consider the force(s) acting on the ISS and write a simplified equation relating its force(s) to speed. Air resistance is negligible. (HINT: The centripetal force is equal to the net inward force on an object. You are being asked to write an equation to find speed.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY