FUND. OF PHYSICS (LL)-W/WILEY+NEXTGEN(2)
FUND. OF PHYSICS (LL)-W/WILEY+NEXTGEN(2)
11th Edition
ISBN: 9781119787235
Author: Halliday
Publisher: WILEY
Question
Book Icon
Chapter 41, Problem 6Q
To determine

To identify:

the electrons that form the valence band in crystalline germanium.

Blurred answer
Students have asked these similar questions
An isolated atom of germanium has 32 electrons, arranged in subshells according to this scheme: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p2. This element has the same crystal structure as silicon and, like silicon, is a semiconductor.Which of these electrons form the valence band of crystalline germanium?
Light-emitting diodes, known by the acronym LED, produce the familiar green and red indicator lights used in a wide variety of consumer electronics. LEDs are semiconductor devices in which the electrons can exist only in certain energy levels. Much like molecules, the energy levels are packed together close enough to form what appears to be a continuous band of possible energies. Energy supplied to an LED in a circuit excites electrons from a valence band into a conduction band. An electron can emit a photon by undergoing a quantum jump from a state in the conduction band into an empty state in the valence band, as shown. The size of the band gap ΔEband determines the possible energies— and thus the wavelengths—of the emitted photons. Most LEDs emit a narrow range of wavelengths and thus have a distinct color. This makes them well-suited for traffic lights and other applications where a certain color is desired, but it makes them less desirable for general illumination. One way to make…
Light-emitting diodes, known by the acronym LED, produce the familiar green and red indicator lights used in a wide variety of consumer electronics. LEDs are semiconductor devices in which the electrons can exist only in certain energy levels. Much like molecules, the energy levels are packed together close enough to form what appears to be a continuous band of possible energies. Energy supplied to an LED in a circuit excites electrons from a valence band into a conduction band. An electron can emit a photon by undergoing a quantum jump from a state in the conduction band into an empty state in the valence band, as shown. The size of the band gap ΔEband determines the possible energies— and thus the wavelengths—of the emitted photons. Most LEDs emit a narrow range of wavelengths and thus have a distinct color. This makes them well-suited for traffic lights and other applications where a certain color is desired, but it makes them less desirable for general illumination. One way to make…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax