Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 11P
To determine
Find the bond length of N2 molecule.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(e) Explain what you understand by the statement: “the bonding in a solid is 30 % ionic and
70 % covalent". Why such types of bondings are occurred in a materials. Give proper
reasoning with examples.
3. (a) One way of treating the vibrational modes of a linear diatomic solid is to assume
that the atoms have the same masses, but the springs on either side of an atom have
spring constants K and G, respectively. Show that the dispersion relation of such a lattice
is given by
(K+G`
+G)' - 4KGsin ka
M
where M is the mass of the ion, G and K the lattice constants, a is the periodic distance
between masses and k the lattice wave vector.
(i)
(ii)
Sketch the dispersion relation
Discuss what happens when K = G and K >> G.
(b) In diatomic (linear) lattice, why do we assume same o and k.
Determine the wavenumbers for the two lowest energy rotational
excitations for trans- 3251°F4 H2 if the S-F bond distance is 1.74 Å and
the S-H bond distance is 1.34 Å.
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Similar questions
- .) The ratio of the effective density of states in the conduction band at E. + 2k,T to the effective density of states in the valence band at E, - k„T is 3 mn (A) m 3/2 (B) 3/2 (2". (C) (D) 到arrow_forward(i) At room temperature a pure crystal has electron and hole concentration n=p=n,-1.5 10 cm, and electron and hole drift mobilities, Po=1350 cm'Ns, P 450 cm2/Vs. Calculate the Hall coefficient and Hall voltage.arrow_forward(i) State and briefly explain the gross selection rule required for a molecule to give a pure rotational spectrum. What is the physical origin of the specific selection rule ΔJ = ±1? (ii) Explain how the bond length of a diatomic molecule may be determined from the measured spacing between the lines observed in its microwave spectrumarrow_forward
- (b) Copper crystallises as FCC (face centred cubic). Given that the atomic radius and density of a given copper sample are 1.28 x 1010 m and 8.98 x 10' kg/m' respectively, carry out the following: Calculate the mass of the copper sample. T'ake Avogadro's number, NA = 6.023 x 1023 atoms/mole. (i) (ii) If the interatomic planar spacing, d, in the sample above is 2.96 x 1010 m, determine the angle at which the first Bragg reflection will occur from the (111) plane if x-radiation of wavelength 1.52 x 10-10 m is used for the analysis. (c) Give two uses of pure copper and two commercial applications of copper alloys.arrow_forward(b) Describe the nature and origin of various forces existing between the atoms of a crystal. Explain the formation of a stable bond using the potential energy versus interatomic distance curve. Assume that the potential energy of two particles in the field of each other is given by U(R) = - R where A and B are constants. R9 (i) Show that the particles form a stable compound for R= R. = (9B/A)/8 (R, is equilibrium separation) i) Show that for stable configuration, the energy of attraction is nine times the energy of repulsion. 8A (iii) Show that the potential energy of the system under stable configuration is 9Rearrow_forwardThe equilibrium separation between the two ions in the KCl molecule is 0.267 nm. (a) Assuming that the K+ and Cl- ions are point particles, compute the electric dipole moment of the molecule. (b) Compute the ratio of your result in (a) to the measured electric dipole moment of 5.41 x 10-29 C*m. This ratio is known as the fractional ionic character of the molecular bond.arrow_forward
- 1.2 Below 24.5 K, Ne is a crystalline solid with an FCC structure. The interatomic interaction energy per atom can be written as: (1) 6 E(r) = -28 2E 14.45* (ii) (iii) – 12 13¹] (ev/atom) Where, & and o are constants that depend on the polarizability, the mean dipole moment, and the extent of overlap of core electrons. For crystalline Ne, & = 3.121 x 10-3 eV and a = 0.274 nm. 12.13 Show that the equilibrium separation between the atoms in an inert gas crystal is given by ro= (1.090) o. What is the equilibrium interatomic separation in the Ne crystal? Find the bonding energy per atom in solid Ne.arrow_forwardVIII.(16 ) Three rotational lines spectrum for H Br( atomic mass of Br = 79.9 g/1 were recorded ( in cm") at : 99.90, 116.43 and 132.89. Answer the following: a) what is the value of B in cm" ? b) what is the value of moment of inertia in kgm? c) what is the bond length in Å d) assign these transitionsarrow_forwardSuppose a pure Si crystal has 5 × 1028 atoms m-3. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Given that ni =1.5 × 1016 m-3.arrow_forward
- (e) Intrinsic silicon has effective densities of states in the conduction band and the valence band of 3.2 × 10¹⁹ cm−³ and 1.8 × 10¹⁹ cm-³, respectively. If the band gap is 1.12 eV, what is the concentration of intrinsic charge carriers in silicon at 300 K? A. 9.46 x 10⁹ m-³ 9.46 x 10⁹ cm-³ 0 m-3 2.40 x 1019 cm-3 B. C. D.arrow_forwardThe moment of inertia of water molecule about an axis bisecting the HOH angle is1.91x10-47 kg m2. Its minimum angular momentum about that axis (other than zero) is ℏ. Inclassical terms, how many revolutions per second do the hydrogen atoms make about the axiswhen in that state? Calculate the rotational constant (cm-1) and bond length of H2O. Does the bondlength seem reasonable?arrow_forward(c) Calculate the Fermi energy of silver from the data given below: atom. Density of Silver = 10.5 gm/cm³ atomic weight = 108 h = 6.62×10-34 Joule - sec m = 9.1×10-³1 Kg. Avogadro's number =6.02×10-21 atoms/gm-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning