Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 89GP
To determine
Find the current produced in a flat silicon semiconductor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) A Si p-n-p transistor has the following properties at room temperature:
Tn = Tp
0.1 us
NE
1019 сті
Emitter concentration
— 10 ст2/s
-3
Dn = Dp
NB 3D 1016 ст
Base concentration
Nc
1019 ст
-3
= Collector concentration
WE
3 µm
Emitter width
W
1.5 um
Metallurgical base width, i.e. the distance between base-emitter junction and
base-collector junction
A = 10-5 cm² = Cross-sectional area
If VCB = 0 V and VEB = 0.6 V, calculate the following:
ЕВ
a) Neutral base width (WB)
b) Base transport factor
c) Emitter injection efficiency
d)
a, ß and y.
e) Ic, Ig and Ig.
For silicon the conduction band minimum is located at 0.49 Å-1 in the [100] direction (X is the Brillouin zone at H00), while the valence band maximum is located at the Γ point (k = 0).a) What is the wavelength and energy of photons needed to supply the required momentum to excite an electron from the Γ point to the conduction band minimum?
b) What is the wavelength of photons needed to supply the required energy to excite an electron from the Γ point to the conduction band minimum?c) What limits optical absorption in silicon at photon energies near the band gap?
A transistor with a height of 0.4 cm and a diameter of 0.6 cm is mounted on a circuit board. The transistor is cooled by air flowing over it with an average heat transfer coefficient of 30 W/m2·K. If the air temperature is 55°C and the transistor case temperature is not to exceed 70°C, determine the amount of power this transistor can dissipate safely. Disregard any heat transfer from the transistor base.
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Similar questions
- The measured density of a KCl crystal is 1.984 g/cm3. What is the equilibrium separation distance of K+ and Cl- ions?arrow_forwardThe measured density of a CsCl crystal is 3.988 g/cm3. What is the equilibrium separate distance of Cs+ and Cl- ions?arrow_forwardIn the transistor circuit on the sideMaximum values are given below. Normalmaximum VCC voltage of the BJT under conditionscalculate. Pd max = 07/100 W Vce max = 20V Ic max = 100mA Bdc = 150arrow_forward
- a) If the electron concentration increase along the x-axis of a conductor as shown in equation below: n=3-1030x2+2- 102x+1026 And D=1.2 x 10-4 m/s. Find the diffusion current at x =Smm? b) Find the minimum electron concentration nmin in semiconductor?arrow_forwardIn a Si semiconductor sample of 200 am length at 600 K the hole concentration as a' function of the sample length follows a quadratic relation of the form p (x) = 1 x1015x, at equilibrium the value of the electric field at 160 jum will be: O 1.935 V/cm O 3.250 V/cm O 5805 V/cm O 55.56 V/cm O 6.450 V/cmarrow_forwardThe electron number density in a semiconductor varies from 1020 m³ to 10¹2 m³ linearly over a distance of 4 µm. Determine the electron diffusion current and electric field at the midpoint if no current flows, He = 0.135 m²V-¹s¹ and T = 300 K.arrow_forward
- The figure shows the pn junction 250 micrometers long and made of silicon with a surface area of 100 micrometers square. In this pn junction, the I region is doped with 10 ^ 19 cm ^ -3 and in the II: region with 10 ^ 17 cm ^ -3 atoms. Only when the S1 switch is closed, the maximum is drawn from the "a-b" ends and 250 mA flows from the circuit. The ability of electrons to move in the pn junction is 1200 cm ^ 2 / V.s, and the ability of the holes to move is 400 cm ^ 2 / V.s. What is the channel width accordingly? (W =?)arrow_forward(c) A common emitter BJT circuit and its voltage transfer curve is shown in Fig. 1(c) respectively. Assume the transistor common-emitter current gain, ß = 50, VBE (on) = 0.7 V, Rg = 100 kn and Rc = 1 k2. (i) Determine the input voltage at the point x. (ii) Calculate the base current, Ig and collector current, Ic at the point x. +Vcc Vo(V) Rc 5- Vo RB V, oww -RAR- IB VBE 0.5 V,(V) 15 Fig. 1(c) -END OF QUESTION-arrow_forward(12)arrow_forward
- An abrupt uniformly doped silicon pn junction is reversed biased by Vg= 20 V. If Na(in n-side)=10" cm, N,(in p-side)=10" cm then the junction capacitance is 20 pF. The junction capacitance if Na(in n-side) increased to 3x10" cm' is equal to ....pF. a) 9 b)21 c)35 d) 52 e) 87arrow_forward(c) Calculate the Fermi energy of silver from the data given below: atom. Density of Silver = 10.5 gm/cm³ atomic weight = 108 h = 6.62×10-34 Joule - sec m = 9.1×10-³1 Kg. Avogadro's number =6.02×10-21 atoms/gm-arrow_forwardPhysics . Determine the number of conduction electrons/m3 in pure silicon AND silicon’s conductivity σfora) T = 10 Kb) T = 100 Kc) T = 1000 Kd) Conceptually, why does Si’s conductivity get better with increasing temperature?(For intrinsic Si, me* = 1.08me, μe = 1400cm2/V∙s, mh* = 0.60me, μh = 450cm2/V∙s, at. wt. = 28.085g/mol, density = 2.329 g/cm3).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax