Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 48P
To determine
Find the wavelength at which the LED
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(i) At room temperature a pure crystal has electron and hole concentration n=p=n,-1.5 10 cm, and electron and hole
drift mobilities, Po=1350 cm'Ns, P 450 cm2/Vs. Calculate the Hall coefficient and Hall voltage.
Pls help ASAP
(a)
Emission of microwave radiation from the J = 1→0 transition of a
molecule has been detected at 88.63 GHz from a region of interstellar
space in which there is evidence of thermal equilibrium and a temperature
of around 20 K. Estimate the frequency and relative intensity of the
J = 2 → 1 transition of the same molecule.
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 2) For a KCl crystal (that you came across in Ch. 1) the unit cell parameter is 6.3Å and the Young's modulus of elasticity along (100] direction is 29.67 GPa (or 29.67 x10° N/m²). (a) Calculate the maximum value of the frequency of the optical branch and the corresponding wavelength. (b) Estimate the forbidden frequency band gap. The atomic masses of the K and Cl atoms are 39 amu and 37 amu, respectively (1 amu 1.67x10-27 kg) = (Hint: You may need to use the Young modulus of elasticity to find the spring constant).arrow_forwardThe maximum wavelength of light that a certain silicon photocell can detect is 1.11 mm. (a) What is the energy gap (in electron volts) between the valence and conduction bands for this photocell? (b) Explain why pure silicon is opaque.arrow_forwardA tightly wound solenoid at 4.0 K is 50 cm long and is constructed from Nb wire of radius 1.5 mm. What maximum current can the solenoid carry if the wire is to remain superconducting?arrow_forward
- (a) Show that the resistivity of intrinsic germanium at 300 °K is 0.45 2.m if n₁ = 2.5×10¹⁹ m²³, n = 0.38 m²/V.s, p = 0.18 m²/v.s. -3 (b) If a donor-type impurity added to the extent of 1 atom per 108 germanium atoms, prove that the resistivity drops to 0.037 2.m. Density = 5.32x10³ Kg/m³, atomic weight 72.6.arrow_forwardThe probability of filling the band by• electrons 0.5 regardless to * temperature T, if E>Ef O Earrow_forwardThe angular frequency of vibrations in a one-dimensional monatomic crystal are given byω(k) = squareroot(4κ/m) l sin (ka/2) l,wherek = 2π/λis the wavenumber of the vibration pattern in terms of its wavelength λ, κ the spring constantbetween neighbouring atoms, and m the mass of each atom.(i) Show that the frequency does not change if one shiftsk → k + 2π/a(ii) Briefly explain the physical reason for this periodicityarrow_forward(3) The photon spectrum from the call molecule has a relatively strong line near λ = 8 milimeters. Estimate the bond length of the molecule by making reasonable assumption a Molar masses: M²₁ = 40₁1 g Mce= 35,5 g сеarrow_forward(a) For indium phosphide (InP) at room temperature, calculate the electron and hole mobilities for the following cases : For intrinsic InP, the electrical conductivity, the number of electrons per cubic meter and the number of holes per cubic meter are 2.5 x 10-6 (22m)¹, 3× 10¹3 m -3 and 3 x 1013 m3, respectively. Similarly, for n-type extrinsic InP, the electrical conductivity, the number of electrons per cubic meter and the number of cubic meter holes per 3-6x 10-6 (2m), 4.5 × 10¹3-3 2 x 10¹3 m³, respectively. are andarrow_forward3arrow_forwardThe internal quantum efficiency is 0.65 for a 500μm long InP cavity laser having a reflectivity of 0.29 on both ends. Compute the slope quantum efficiency if the effective absorption coefficient is 10 cm-1 .arrow_forward(i) The total electrical resistivity of metals is the sum of the contributions from thermal vibrations, impurities and plastic deformation; (ii) the resistivity rises linearly with temperature above -200 degree Celsius; (iii) increasing the concentration of impurity results in an enhancement of impurity; (iv) plastic deformation also raises the electrical resistivity due to the increased numbers of electron-scattering dislocations. Which of the above statements is false? D. (iv) A. (i) C. (iii) E. All of the above B. (ii) Other:arrow_forwardA Fabry–Perot laser diode is operating at 1750 nm. The Laser Diode has a cavity length of 400 μm. Therefractive index of semiconductor used is approximately 3.2 and dn/dT= 2.5 × 10-.?^-1. Find the shiftin the emission wavelength for a given mode per unit temperature change.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning