
Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 7P
A large chunk of metal has a mass of 393 kg, and its volume is measured to be 0.05 m3.
(a) Find the metal's mass density and weight density in SI units,
(b) what kind of metal is it?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal.
At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall?
N ---direction--- ▾
---direction---
to the top
to the bottom
to the left
to the right
1.50 m
40.0°
The magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below.
F(N)
4
3
A
2
t(s)
1
2 3
45
(a) Find the impulse of the force over the 5.00-s time interval.
==
N⚫s
(b) Find the final velocity the particle attains if it is originally at rest.
m/s
(c) Find its final velocity if its original velocity is -3.50 î m/s.
V₁
m/s
(d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s.
=
avg
N
••63 SSM www In the circuit of
Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF,
R₁
S
R₂
R3
800
C
H
R₁ = R₂ = R3 = 0.73 MQ. With C
completely uncharged, switch S is
suddenly closed (at t = 0). At t = 0,
what are (a) current i̟ in resistor 1,
(b) current 2 in resistor 2, and
(c) current i3 in resistor 3? At t = ∞o
(that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz?
What is the potential difference V2 across resistor 2 at (g) t = 0 and
(h) t = ∞o? (i) Sketch V2 versus t between these two extreme times.
Figure 27-65 Problem 63.
Chapter 4 Solutions
Inquiry into Physics
Ch. 4 - Prob. 1LACh. 4 - Fill in the blanks of this little story with the...Ch. 4 - Prob. 1LTACh. 4 - Prob. 2LTACh. 4 - Prob. 1PIPCh. 4 - Prob. 2PIPCh. 4 - 1. In Section 4.1 in the description of matter,...Ch. 4 - Review Section 4.3 carefully. Based on your...Ch. 4 - (Indicates a review question, which means it...Ch. 4 - (Indicates a review question, which means it...
Ch. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - (Indicates a review question, which means it...Ch. 4 - (Indicates a review question, which means it...Ch. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 9QCh. 4 - Prob. 10QCh. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 16QCh. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 18QCh. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 24QCh. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 26QCh. 4 - (Indicates a review question, which means it...Ch. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 29QCh. 4 - Prob. 30QCh. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 32QCh. 4 - Prob. 33QCh. 4 - Prob. 34QCh. 4 - (Indicates a review question, which means it...Ch. 4 - (Indicates a review question, which means it...Ch. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 38QCh. 4 - Prob. 39QCh. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 41QCh. 4 - (Indicates a review question, which means it...Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - The water in the plumbing in a house is at a gauge...Ch. 4 - A box-shaped metal can has dimensions 8 in. by 4...Ch. 4 - A viewing window on the side of a large tank at a...Ch. 4 - A large chunk of metal has a mass of 393 kg, and...Ch. 4 - A small statue is recovered in an archaeological...Ch. 4 - A large tanker truck can carry 20 tons (40.000 lb)...Ch. 4 - . The total mass of the hydrogen gas in the...Ch. 4 - . A large balloon used to sample the upper...Ch. 4 - . A certain part of an aircraft engine has a...Ch. 4 - . The volume of the Drop Tower "Bremen" (a...Ch. 4 - . It is determined by immersing a crown in water...Ch. 4 - . Find the gauge pressure at the bottom of a...Ch. 4 - . The depth of the Pacific Ocean in the Mariana...Ch. 4 - . Calculate the gauge pressure at a depth of 300 m...Ch. 4 - . A storage tank 30 m high is filled with...Ch. 4 - . The highest point in North America is the top of...Ch. 4 - . The highest altitude ever reached by a glider...Ch. 4 - . An ebony log with volume 12 ft3 is submerged in...Ch. 4 - . An empty storage tank has a volume of 1,500 ft3....Ch. 4 - . A blimp used for aerial camera views of sporting...Ch. 4 - . A modern-day zeppelin holds 8,000 m3 of helium....Ch. 4 - . A box-shaped piece of concrete measures 3 ft by...Ch. 4 - . A juniper-wood plank measuring 0.25 ft by 1 ft...Ch. 4 - Prob. 27PCh. 4 - . A boat (with a flat bottom) and its cargo weigh...Ch. 4 - . A scale reads 100 N when a piece of aluminum is...Ch. 4 - . A rectangular block of ice with dimensions 2 m...Ch. 4 - . A dentist's chair with a person in it weighs...Ch. 4 - . A booster pump on a brake system designed to be...Ch. 4 - . The wing of an airplane has an average...Ch. 4 - , The volume flow rate m an artery that supplies...Ch. 4 - . Air flows through a heating duct with a square...Ch. 4 - When exactly 1 cup of sugar is dissolved in...Ch. 4 - Prob. 2CCh. 4 - Prob. 3CCh. 4 - Prob. 4CCh. 4 - Prob. 5CCh. 4 - Prob. 6CCh. 4 - Prob. 7CCh. 4 - Prob. 8CCh. 4 - Prob. 9CCh. 4 - Prob. 10CCh. 4 - Prob. 11CCh. 4 - Prob. 12CCh. 4 - Prob. 13CCh. 4 - , Water flows straight down from an open faucet...Ch. 4 - Prob. 15C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forwardIn the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forward
- The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forward
- This one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forward
- Consider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forwardYou are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Gas density and PV=nRT, the ideal gas law; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=RFF1MIQDdds;License: Standard YouTube License, CC-BY
Weight, Force, Mass & Gravity | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=U78NOo-oxOY;License: Standard Youtube License