Concept explainers
(a)
The magnitude of contact force between the two masses.
(a)
Answer to Problem 79P
The magnitude of contact force between the two masses is
Explanation of Solution
Write the expression for the Newton’s second law of motion.
Here,
If the plane is frictionless, then the only force on the two masses are the normal forces and the weight with the frictional forces equalling zero. Since there is no force directed up the incline, the normal force between the two blocks must be zero.
Conclusion:
Therefore, the magnitude of contact force between the two masses is
(b)
The magnitude of contact force between two masses if the coefficient of kinetic friction between the masses and the plane are equal.
(b)
Answer to Problem 79P
The magnitude of contact force between two masses if the coefficient of kinetic friction between the masses and the plane are equal is
Explanation of Solution
Write the expression for the Newton’s law for the mass
Here,
Write the expression for the Newton’s law for the mass
Here,
Use equation (III) to write the expression for
Here,
Use equation (III) in (II) to solve for
Write the expression for the Newton’s law for the mass
Here,
Write the expression for the Newton’s law for the mass
Here,
Use equation (VI) to write the expression for
Here,
Use equation (VII) in (V) to solve for
Write the expression for the Newton’s third law of motion.
If the normal force is non-zero, then the acceleration must be equal.
Use equation (VIII) and (IV) in (X) and it becomes,
The coefficient of kinetic friction between the masses and the plane are equal.
Use equation (XII) in (XI) to solve for the contact forces between the two masses.
The only way this can be true with
Conclusion:
Therefore, the magnitude of contact force between two masses if the coefficient of kinetic friction between the masses and the plane are equal is
(c)
If
(c)
Answer to Problem 79P
The magnitude of contact force between the two blocks is
Explanation of Solution
Use equation (IX) and (XI) to solve for
Conclusion:
Substitute
Therefore, the magnitude of contact force between the two blocks is
Want to see more full solutions like this?
Chapter 4 Solutions
College Physics, Volume 1
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning