College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 58P
58 * A tennis ball is served from the back line of the court such that it leaves the racket 2.4 m above the ground in a horizontal direction at a speed of 22.3 m/s (50 mi /h). (a) Will the ball cross a 0.91-m-high net 11.9 m in front of the server? (b) Will the ball land in the service court, which is within 6.4 m of the net on the other side of the net?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) A kicker lines up to make a field goal attempt. If the ball leaves the kicker's foot at an initial
speed of 20 m/s and an angle to the horizontal of 30.0°,
Over what distances will the kick be successful (that it, over what range of distances will
the ball clear the crossbar?) Assume the kick is in a domed stadium with no wind, and the
ball is a point object.
a.
Tobio serves the ball with an initial velocity of 20.5 m/s at an angle of 18˚ from the horizontal, 1.2 m high from the floor. Assuming there is no air resistance and no spin is added to the ball,
a. how long will it take for the ball to be just above the net if Tobio serves 10.2 m away from the net?
b. how far above the net will the ball be if the standard height is 2.43 m?
c. how far away from the net on the other side will the ball land? Is it still inside the court or is it outside?
(Volleyball courts are 9 m wide and 18 m long divided equally by the net, so both teams have 9 x 9 m of space each.)
31
Chapter 4 Solutions
College Physics
Ch. 4 - Review Question 4.1 When does a vector have a...Ch. 4 - Review Question 4.2 The x- and y-components of...Ch. 4 - Review Question 4.3 What is the force of friction...Ch. 4 - Review Question 4.4 For problems involving objects...Ch. 4 - Review Question 4.5 Why do we need to resolve the...Ch. 4 - Review Question 4.6
You read in this section that...Ch. 4 - 1. A car accelerates along a road. Identify the...Ch. 4 - 2. A person pushes a 10-kg crate exerting a 200-N...Ch. 4 - Compare the ease of pulling a lawn mower and...Ch. 4 - 4. You simultaneously release two balls: one you...
Ch. 4 - You shoot an arrow with a bow. The following is...Ch. 4 - In what reference frame does a projectile launched...Ch. 4 - In Table 4.6 we found that the two balls touched...Ch. 4 - 8. While running at constant velocity, how should...Ch. 4 - 9. You hold a block on a horizontal, frictionless...Ch. 4 - 10. In the process described in the previous...Ch. 4 - Suppose that two blocks are positioned on an...Ch. 4 - 12. A box containing some stones is resting on a...Ch. 4 - For the following two questions, the answer...Ch. 4 - 14. A block is resting on a rough inclined...Ch. 4 -
15. A box with a heavy television set in it...Ch. 4 - 16. How can an Atwood machine be used to determine...Ch. 4 - 17. Your friend is on Rollerblades holding a...Ch. 4 - Explain why a car starts skidding when a driver...Ch. 4 - 19. Explain why old tires need to be replaced.
Ch. 4 - 20. Explain how friction helps you to walk.
Ch. 4 - 21. Explain why you might fall forward when you...Ch. 4 - Explain why you might fall backward when you slip.Ch. 4 - Explain why the tires of your car can spin out...Ch. 4 - You throw two identical balls simultaneously at...Ch. 4 - 25. Your friend says that the vertical force...Ch. 4 - Your friend says that a projectile launched at an...Ch. 4 - An object of mass m1 placed on an inclined plane...Ch. 4 - 28 An object of mass m1 placed on an inclined...Ch. 4 - 29. A horse is pulling a sled. If the force...Ch. 4 - 30. If you kick a block so that it starts moving...Ch. 4 - Determine the x- and y-components of each force...Ch. 4 - 2. Determine the x- and y-components of each force...Ch. 4 - * Determine the x- and y-components of each...Ch. 4 - 4 * The x- and y-components of several unknown...Ch. 4 - * The x- and y-scalar components of several...Ch. 4 - 6. * Three ropes pull on a knot shown in Figure...Ch. 4 - * Figure P4.7 shows an unlabeled force diagram for...Ch. 4 - For each of the following situations, draw the...Ch. 4 - * Write Newtons second law in component form for...Ch. 4 - For the situations described here, construct a...Ch. 4 - * Write Newtons second law in component form for...Ch. 4 - Apply Newtons second law in component form for the...Ch. 4 - Apply Newtons second law in component form for the...Ch. 4 - 14. * Equation Jeopardy 1 The three sets of...Ch. 4 - * You exert a force of 100 N on a rope that pulls...Ch. 4 - 16. * You exert a force of a known magnitude F on...Ch. 4 - * Olympic 100-m dash start At the start of his...Ch. 4 - 18. * Your own accelerometer A train has an...Ch. 4 - * EST Finn and Hazel are using a battery-powered...Ch. 4 - A 91.0-kg refrigerator sits on the floor. The...Ch. 4 - A 60-kg student sitting on a hardwood floor does...Ch. 4 - Car stopping distance and friction A car traveling...Ch. 4 - 23. * A 50-kg box rests on the floor. The...Ch. 4 - 24. * Marsha is pushing down and to the right on a...Ch. 4 - * You want to determine the coefficient of kinetic...Ch. 4 - * A wagon is accelerating to the right. A book is...Ch. 4 - s. Determine an expression for the minimum...Ch. 4 - * A car has a mass of 1520 kg. While traveling at...Ch. 4 - m/s2 when pulled by a rope exerting a 120-N force...Ch. 4 - 30. ** A crate of mass m sitting on a horizontal...Ch. 4 - * EST You absentmindedly leave your book bag on...Ch. 4 - 32. * Block 1 is on a horizontal surface with a...Ch. 4 - 33. * You want to use a rope to pull a 10-kg box...Ch. 4 - 34. * A car with its wheels locked rests on a...Ch. 4 - 35. Olympic skier Olympic skier Tina Maze skis...Ch. 4 - * Another Olympic skier Bode Miller. 80-kg...Ch. 4 - * A book slides off a desk that is tilted 15...Ch. 4 - * Helge, Steve, and Heidi are sitting on a sled on...Ch. 4 - 40. * When traveling on an airplane you get meals...Ch. 4 - 41. Skier A 52-kg skier starts at rest and slides...Ch. 4 - 42. * Ski rope tow You agree to build a backyard...Ch. 4 - 43. * Soapbox racecar A soapbox derby racecar...Ch. 4 - 44. * A person is pushing two carts that are...Ch. 4 - 45. * BIO Whiplash Experience A car sitting at...Ch. 4 - Iditarod race practice The dogs of four-time...Ch. 4 - angle above the horizontal. The other end of the...Ch. 4 - * Rope 1 pulls horizontally, exerting a force of...Ch. 4 - * Three sleds of masses m1,m2,m3 are on a smooth...Ch. 4 - 50. ** Repeat Problem 4.49 , only this time with...Ch. 4 - 51. * A skier is moving down a snowy hill with an...Ch. 4 - ** A person holds a 200-g block that is connected...Ch. 4 - 53. ** Two blocks of masses are connected to each...Ch. 4 - 54. ** The 20-kg block shown in Figure P4.54 ...Ch. 4 - * A squirrel jumps of a roof in the horizontal...Ch. 4 - * A frog jumps at an angle 30 above the...Ch. 4 - 57. A bowling ball rolls off a table. Draw a force...Ch. 4 - 58 * A tennis ball is served from the back line of...Ch. 4 - 59. * Equation Jeopardy 3 The equations below...Ch. 4 - 60 * EST An airplane is delivering food to a small...Ch. 4 - A ball moves in an arc through the air (see Figure...Ch. 4 - A marble is thrown as a projectile at an angle...Ch. 4 - 63 * Marbles are exiting a container through a...Ch. 4 - * Robbie Knievel ride On May 20, 1999, Robbie...Ch. 4 - 65. * Daring Darless wishes to cross the Grand...Ch. 4 - * A football punter wants to kick the ball so that...Ch. 4 - 67. * If you shoot a cannonball from the same...Ch. 4 - 68. When you actually perform the experiment...Ch. 4 - 69. * You can shoot an arrow straight up so that...Ch. 4 - 70. * Robin Hood wishes to split an arrow already...Ch. 4 - 71. * Three force diagrams for a car on a road are...Ch. 4 - * A minivan of mass 1560 kg starts at rest and...Ch. 4 - 74. * Emily pulls a 5-kg block across a rough...Ch. 4 - 75. * EST You abruptly push a 1.7-kg book along a...Ch. 4 - 76 ** EST In the situation of Problem 4.75,...Ch. 4 - 78. * Two blocks of masses and hang at the ends...Ch. 4 - 79. * A 3.5-kg object placed on an Inclined plane...Ch. 4 - above the horizontal) is connected by a string...Ch. 4 - above the horizontal) is connected by a string...Ch. 4 - 82 ** You are driving at a reasonable constant...Ch. 4 - 84. * In the situation of Problem 2.71 (Chapter 2...Ch. 4 - 87. * Your friend has a pie on the roof of his...Ch. 4 - * A ledge on a building is 20 m above the ground....Ch. 4 - 89. * You are hired to devise a method to...Ch. 4 - The mass of a spacecraft is about 480 kg. An...Ch. 4 - incline When she reaches the level floor at the...Ch. 4 - * Tell all A sled starts at the top of the hill...Ch. 4 - Professor tests airplane takeoff speed D. A....Ch. 4 - Professor tests airplane takeoff speed D A Wardle,...Ch. 4 - Professor tests airplane takeoff speed D A Wardle,...Ch. 4 - Professor tests airplane takeoff speed D. A....Ch. 4 - Choose the best velocity-versus-time graph below...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Assume that the skier left the ramp moving...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...
Additional Science Textbook Solutions
Find more solutions based on key concepts
28.51 A wooden ring whose mean diameter is 14.0 cm is wound with a closely spaced toroidal winding of 600 turns...
University Physics with Modern Physics (14th Edition)
What effect does condensation on a glass of ice water have on the rate at which the ice melts? Will the condens...
University Physics Volume 2
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
An object undergoes simple harmonic motion in two mutually perpendicular directions, its position given by r=As...
Essential University Physics: Volume 1 (3rd Edition)
24. What type of galaxy is the Milky Way?
Conceptual Physical Science (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student throws a heavy red ball horizontally from a balcony of a tall building with an initial speed v0. At the same time, a second student drops a lighter blue ball from the same balcony. Neglecting air resistance, which statement is true? (a) The blue ball reaches the ground first, (b) The balls reach the ground at the same instant, (c) The red ball reaches the ground first, (d) Both balls hit the ground with the same speed, (e) None of statements(a) through(d) is true.arrow_forwardAntlion larvae lie in wait for prey at the bottom of a conical pit about 5.0 cm deep and 3.8 cm in radius. When a small insect ventures into the pit, it slides to the bottom and is seized by the antlion. If the prey attempts to escape, the antlion rapidly launches grains of sand at the prey, either knocking it down or causing a small avalanche that returns the prey to the bottom of the pit. Suppose an antlion launches grains of sand at an angle of 72 above the horizon. Find the launch speed v0 required to hit a target at the top of the pit, 5.0 cm above and 3.8 cm to the right of the antlion.arrow_forwardThe free throw line in basketball is 4.57 m (15 ft) from the basket, which is 3.05 m (10 ft) above the floor. A player standing on the free throw line throws the ball with an initial speed of 7.15 m/s, releasing it at a height of 2.44 m (8 ft) above the floor. At what angle above the horizontal must the ball be thrown to exactly hit the basket? Note that most players will use a large initial angle rather than a flat shot because it allows for a larger margin of error. Explicitly show how you follow the steps involved in solving projectile motion problems.arrow_forward
- A student derides to measure the muzzle velocity of a pellet shot from his gun. He points the gun horizontally. He place a target on a vertical wall a distance x away from the gun. He pellet hits the target a vertical distance y below the gun. (a) Show that the position of the pellet when traveling through the air is given by y = Ax2, where A it a constant. (b) Express the constant A In terms of the initial (muzzle) velocity and the free-fall acceleration. (c) If x = 3.00 m and y = 0 210 m, what is the initial speed of the pellet?arrow_forwardA boy throws a stone horizontally from the top of a cliff of height h toward the ocean below. The stone strikes the ocean at distance d from the base of the cliff. In terms of h, d, and g, find expressions for (a) the time t at which the stone lands in the ocean, (b) the initial speed of the stone, (c) the speed of the stone immediately before it reaches the ocean, and (d) the direction of the stones velocity immediately before it reaches the ocean.arrow_forwardA solid metal ball is thrown from the top of a building at an angle of 20° above the horizontal with an initial speed of 12 m/s. The ball lands on the ground 2.5 s after it is thrown. What is the height of the building (in m)? m Need Help? Submit Answer Read Itarrow_forward
- A tennis player serves a ball horizontally at a height h = 3.4 m a distance d = 15.3 m from the net. What maximum speed can the ball be served so as to land within a distance w = 6.3 m of the and be a good serve? warrow_forward6. man stands on the roof of a 50 m tall building and throws a ball with a speed of 25 m/s at 40° above the horizontal. If we ignore the air resistance; a. Find the vertical and horizontal components of the ball's initial velocity. b. Find the maximum height above the ground that the ball reaches. c. Find the ball velocity (in unit vector nutation) just before it strikes the ground. d. At what horizontal distance from the edge of the building does the ball strikes the ground? e. What is the vertical acceleration of the ball at the maximum height? a. Vox 19.15 m/s Voy 16.07 m/s b. y = 50+ 13.18 = 63.18 m e. c. Vx = Vox = 19.15 m/s v=vxî + vyĵ = 19.15î — 35.18ĵ d. x = 100.16 m ay = -9.8 m/s² Vy = -35.18 m S 0000000000 00 DO 00 00 vo 40° 50 marrow_forwardQ1-A 2.0 meter tall basketball player is standing on the floor a distance from the basket. He shoots the ball at an angle of 23 degrees above the horizontal with a speed of 9.6 m/s and makes the shot. If the ball goes in the hoop at 5 seconds, what is the height of the hoop?arrow_forward
- FBegin&user=Student Practice Assignment Homework Lo 2. A pitcher throws horizontally a fast ball at 157 km/h toward the home plate, which is 18.1 m away. Neglecting air resistance (not a good idea if you are the batter), find how far the ball drops because of gravity by the time it reaches the home plate.arrow_forwardA golf ball is struck at an initial speed of 8.0 m/s 35 degrees above the horizontal. What is the speed of the ball when it returns to the same horizontal level? a) 4.0 m/s b) 8.0 m/s c) 9.8 m/s d) 16 m/sarrow_forward479 PROBLEM: A boy wishes to throw a ball over a flat roofed school house that stands 12 m wide and 7.5 m high on level ground. Assuming that the ball will leave his hand at a height of 1.5 m above the ground, determine how far from the wall he should take his stand in order to make the ball clear the roof with least effort, that is, with minimum initial velocity. Solution: 7.5 1,5 R=12 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY