Concept explainers
CP Extraterrestrial Physics. You have landed on an unknown planet, Newtonia, and want to know what objects weigh there. When you push a certain tool, starting from rest, on a frictionless horizontal surface with a 12.0-N force, the tool moves 16.0 m in the first 2.00 s. You next observe that if you release this tool from rest at 10.0 m above the ground, it takes 2.58 s to reach the ground. What does the tool weigh on Newtonia, and what does it weigh on Earth?
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Anatomy & Physiology (6th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- An object with a mass of 1.76 kg is initially at rest upon a horizontal, frictionless surface. An applied force of 3.04 N i acts on the object for 2.08 s. What is the object's final speed? Enter a number rounded to 2 decimal places and assume the answer has proper SI Units.arrow_forwardPlease provide answer urgently, with explanation. Also, is speed and velocity the same in this case?arrow_forwardAs a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by a tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 48.5 kg. if this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.80 m/s after two-thirds of its length has left the surface. what is the magnitude of the force F during the intervalarrow_forward
- An 85 kg man lowers himself to the ground from a height of 10.0 m by holding onto a rope that runs over a frictionless pulley to a 65 kg sandbag. With what speed does the man hit the ground if he started from rest?arrow_forwarda 2 kg golf ball moves along an x axis according to x(t) = 10t^3 - 2.80t^2 + 7.4t +15 , with x in meters and t in seconds . in unit-vector notation , what is the net force acting on the particle at t= 5.20 s?arrow_forwardA person catches a ball with a mass of 145 g dropped from a height of 60.0 m above his glove. His hand stops the ball in 0.0100 s. What is the force exerted by his glove on the ball? Assume the ball slows down with constant acceleration.arrow_forward
- While two forces act on it, a particle is to move at the constant velocity = (3.58 m/s) -(-3.26 m/s). One of the forces is F1 = (1.88 N) + (-5.85 N). What is the other force? Number i + i j Unitsarrow_forwardAs a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 45.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.40 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. (a) the salmon's acceleration m/s² upward (b) the magnitude of the force F during this intervalarrow_forwardAn aging coyote (m = 42.1 kg) cannot run fast enough to catch a roadrunner (m = 16.3 kg). He purchases a set of jet-powered roller skates, which proved a constant horizontal acceleration of 15.2 m/s2. The coyote starts at rest 73.2 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff. Hint: their initial positions at the top of the cliff are the same. a. Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. b. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight, so his acceleration while he is in the air is (15.2i – 9.80j) m/s2. The cliff is 127 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands. c. Determine the components of the coyote’s impulse upon impact.arrow_forward
- Dave with a mass of 60 kg goes tubing down a 20 m long hill that has an angle off the horizon of 25º. (Gravity applies) a. He gets a push from the bottom of the hill, so his initial velocity is 2 m/s. How far up the hill will he go before stopping? (there’s no friction) b. He goes back down the hill and then his friend Jill tries to pull him on the tube across a small patch of grass (μk=0.30). If she is pulling parallel to the ground at constant 5 m/s for 5 sec how much power does she expend? c. After climbing back uphill, Dave decided to roll down the hill instead. If he were to be a long cylinder with a radius of 0.1 m, what is his moment of inertia? d. After rolling without slipping down the hill, what is Dave’s final velocity at the bottom of the hill? What is his angular velocity at the bottom of the hill? Dave with a mass of 60 kg goes tubing down a 20 m long hill that has an angle off the horizon of 25º. (Gravity applies) He gets a push from the bottom of the hill, so his…arrow_forwardA man pushes an object to the right and exerts a force which has a horizontal compotent of F = 33 N. A horizontal frictional force has a magnitude of f = 15 N which opposed the horizontal component of the fushing force. The mass of the object is m = 31 kg. Write an expression for the magnitude of the acceleration of the object. If the object starts at rest what is the speed in meters per second at t = 2.00s? If the man stops pushing the object at t = 2.00s and the firctional force is constant what is the distance in meters does to object slide before coming to a rest?arrow_forwardDavid throws a 50 kg cart down a ramp with an initial speed of vi = 6 m/s. The ramp is at an angle of 20◦, and the coefficient of kinetic friction between the cart and the ramp is µk = 0.25. Additionally, the coefficient of static friction is µs = 0.55. How much time does it take to reach Ryan who is 10 m away? Assume that the cart slides and doesn’t roll.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning