University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.20E
A small car of mass 380 kg is pushing a large truck of mass 900 kg due east on a level road. The car exerts a horizontal force of 1600 N on the truck. What is the magnitude of the force that the truck exerts on the car?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 6.00 kg block is in contact with a 4.00 kg block on a horizontal frictionless surface. The 6.00 block is being pushed by a horizontal 20.0 N force. What is the magnitude of the force that the 6.00 kg block exerts on the 4.00 kg block?
Sammy is doing a strength testing session on the turf in preparation for the upcoming basketball season. Sammy's mass is 55 kg and she is trying to push a 105 kg sled across the artificial turf outside on Raymond Field. The coefficient of static friction between the sled and the turf is 0.3. If Sammy pushes only horizontally against the sled, how much force must she push with to just initiate movement of the sled?
Two forces are acting on a 5.0-kg object that moves with acceleration 2.0 m/s2 in the positive y-direction. If one of the forces acts in the positive x-direction and has magnitude of 12 N, what is the magnitude of the other force?
Chapter 4 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 4.1 - Figure 4.5 shows a force F acting on a crate. With...Ch. 4.2 - In which of the following situations is there zero...Ch. 4.3 - Rank the following situations in order of the...Ch. 4.4 - Prob. 4.4TYUCh. 4.5 - You are driving a car on a country road when a...Ch. 4 - Can a body be in equilibrium when only one force...Ch. 4 - A ball thrown straight up has zero velocity at its...Ch. 4 - A helium balloon hovers in midair, neither...Ch. 4 - When you fly in an airplane at night in smooth...Ch. 4 - If the two ends of a rope in equilibrium are...
Ch. 4 - You tie a brick lo the end of a rope and whirl the...Ch. 4 - When a car stops suddenly, the passengers tend to...Ch. 4 - Some people say that the force of inertia (or...Ch. 4 - A passenger in a moving bus with no windows...Ch. 4 - Suppose you chose the fundamental physical...Ch. 4 - Why is the earth only approximately an inertial...Ch. 4 - Does Newtons second law hold true for an observer...Ch. 4 - Some students refer to the quantity ma as the...Ch. 4 - The acceleration of a falling body is measured in...Ch. 4 - You can play catch with a softball in a bus moving...Ch. 4 - Students sometimes say that the force of gravity...Ch. 4 - Why can it hurt your foot more to kick a big rock...Ch. 4 - Its not the fall that hurts you; its the sudden...Ch. 4 - A person can dive into water from a height of 10 m...Ch. 4 - Why are cars designed to crumple in front and back...Ch. 4 - When a string barely strong enough lifts a heavy...Ch. 4 - A large crate is suspended from the end of a...Ch. 4 - Which feels a greater pull due to the earths...Ch. 4 - Why is it incorrect to say that 1.0 kg equals 2.2...Ch. 4 - A horse is hitched to a wagon. Since the wagon...Ch. 4 - True or false? You exert a push P on an object and...Ch. 4 - A large truck and a small compact car have a...Ch. 4 - When a car comes to a stop on a level highway,...Ch. 4 - A small compact car is pushing a large van that...Ch. 4 - Consider a tug-of-war between two people who pull...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A manual for student pilots contains this passage:...Ch. 4 - If your hands are wet and no towel is handy, you...Ch. 4 - If you squat down (such as when you examine the...Ch. 4 - When a car is hit from behind, the occupants may...Ch. 4 - In a head-on auto collision, passengers who are...Ch. 4 - In a head-on collision between a compact 1000-kg...Ch. 4 - Suppose you are in a rocket with no windows,...Ch. 4 - Two dogs pull horizontally on ropes attached to a...Ch. 4 - To extricate an SUV stuck in the mud, workmen use...Ch. 4 - BIO Jaw Injury. Due to a jaw injury, a patient...Ch. 4 - A man is dragging a trunk up the loading ramp of a...Ch. 4 - Forces F1 and F2act at a point. The magnitude of...Ch. 4 - An electron (mass = 9.11 1031 kg) leaves one end...Ch. 4 - A 68.5-kg skater moving initially at 2.40 m/s on...Ch. 4 - You walk into an elevator, step onto a scale, and...Ch. 4 - A box rests on a frozen pond, which serves as a...Ch. 4 - A dockworker applies a constant horizontal force...Ch. 4 - A hockey puck with mass 0.160 kg is at rest at the...Ch. 4 - A crate with mass 32.5 kg initially at rest on a...Ch. 4 - A 4.50-kg experimental cart undergoes an...Ch. 4 - A 2.75-kg cat moves in a straight line (the...Ch. 4 - A small 8.00-kg rocket burns fuel that exerts a...Ch. 4 - An astronauts pack weighs 17.5 N when she is on...Ch. 4 - Superman throws a 2400-N boulder at an adversary....Ch. 4 - BIO (a) An ordinary flea has a mass of 210 g. How...Ch. 4 - At the surface of Jupiters moon Io, the...Ch. 4 - A small car of mass 380 kg is pushing a large...Ch. 4 - BIO World-class sprinters can accelerate out of...Ch. 4 - The upward normal force exerted by the floor is...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A student of mass 45 kg jumps off a high diving...Ch. 4 - Section 4.6 Free-Body Diagrams 4.25Crates A and B...Ch. 4 - You pull horizontally on block B in Fig. F4.26,...Ch. 4 - A ball is hanging from a long siring that is tied...Ch. 4 - CP A .22-caliber rifle bullet traveling at 350 m/s...Ch. 4 - A chair of mass 12.0 kg is sitting on the...Ch. 4 - A large box containing your new computer sits on...Ch. 4 - CP A 5.60-kg bucket of water is accelerated upward...Ch. 4 - CP You have just landed on Planet X. You release a...Ch. 4 - Two adults and a child want to push a wheeled cart...Ch. 4 - CP An oil tankers engines have broken down, and...Ch. 4 - CP BIO A Standing Vertical Jump. Basketball player...Ch. 4 - CP An advertisement claims that a particular...Ch. 4 - BIO Human Biomechanics. The fastest pitched...Ch. 4 - BIO Human Biomechanics. The fastest served tennis...Ch. 4 - Two crates, one with mass 4.00 kg and the other...Ch. 4 - CP Two blocks connected by a light horizontal rope...Ch. 4 - CALC To study damage to aircraft that collide with...Ch. 4 - CP A 6.50-kg instrument is hanging by a vertical...Ch. 4 - BIO Insect Dynamics. The froghopper (Philaenus...Ch. 4 - A loaded elevator with very worn cables has a...Ch. 4 - CP After an annual checkup, you leave your...Ch. 4 - CP A nail in a pine board stops a 4.9-N hammer...Ch. 4 - CP Jumping to the Ground. A 75.0-kg man steps off...Ch. 4 - The two blocks in Fig. P4.48 are connected by a...Ch. 4 - CP Boxes A and B are connected to each end of a...Ch. 4 - CP Extraterrestrial Physics. You have landed on an...Ch. 4 - CP CALC A mysterious rocket-propelled object of...Ch. 4 - CALC The position of a training helicopter (weight...Ch. 4 - DATA The table gives automobile performance data...Ch. 4 - DATA An 8.00-kg box sits on a level floor. You...Ch. 4 - DATA You are a Starfleet captain going boldly...Ch. 4 - Prob. 4.56CPCh. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCERS BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - The forces on a dancer can be measured directly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
How did the Copernican revolution alter perceptions of the ancient Greek debate over extraterrestrial life? (a)...
Life in the Universe (4th Edition)
Multiple Choice Questions
7. What does the resolution limit of an optical system depend on? Choose all answers ...
College Physics
74. A friend says that wave speed is equal to the frequency of a wave times its wavelength, and another says it...
Conceptual Physical Science (6th Edition)
What quantity of water has the same mass as 1 m3 of air under normal conditions? (a) 1 m3; (b) 100 cm3; (c) 1 L...
Essential University Physics: Volume 1 (3rd Edition)
Which Moon position (F–l) best corresponds with the Moon phase shown in the upper-right corner of Figure 2?
Ent...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sleigh is being pulled horizontally by a train of horses at a constant speed of 8.05 m/s. The magnitude of the normal force exerted by the snow-covered ground on the sleigh is 6.37 103 N. a. If the coefficient of kinetic friction between the sleigh and the ground is 0.23, what is the magnitude of the kinetic friction force experienced by the sleigh? b. If the only other horizontal force exerted on the sleigh is due to the horses pulling the sleigh, what must be the magnitude of this force?arrow_forwardWhich of the following statements is most correct? (a) It is possible for an object to have motion in the absence of forces on the object. (b) It is possible to have forces on an object in the absence of motion of the object. (c) Neither statement (a) nor statement (b) is correct. (d) Both statements (a) and (b) are correct.arrow_forwardAn object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forward
- A ball is falling toward the ground. Which of the following statements are false? (a) The force that the ball exerts on Earth is equal in magnitude to the force that Earth exerts on the ball, (b) The ball undergoes the same acceleration as Earth. (c) The magnitude of the force the Earth exerts on the ball is greater than the magnitude of the force the ball exerts on the Earth.arrow_forwardA force F applied to an object of mass m1 produces an acceleration of 3.00 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If m1 and m2 are combined into one object, find its acceleration under the action of the force F.arrow_forwardA 3.00-kg object is moving in a plane, with its x and y coordinates given by x = 5t2 1 and y = 3t3 + 2, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.00 s.arrow_forward
- A block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling? Repeat Problem 71, but this time you pull on the block at an angle of 20.0.arrow_forwardAn object of mass m1 = 5.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m2 = 9.00 kg as shown in Figure P4.28. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects and (c) the tension in the string. Figure P4.28arrow_forwardAn object of mass M is held in place by an applied force F and a pulley system as shown in Figure P4.43. The pulleys are massless and frictionless. (a) Draw diagrams showing the forces on each pulley. Find (b) the tension in each section of rope, T1, T2, T3, T4, and T5 and (c) the magnitude of F. Figure P4.43 44. Any device that allows you to increase the force you exert is a kind of machine. Some machines, such as the prybar or the inclined plane, are very simple. Some machines do not even look like machines. For example, your car is stuck in the mud and you cant pull hard enough to get it out. You do, however, have a long cable that you connect taut between your front bumper and the trunk of a stout tree. You now pull sideways on the cable at its midpoint, exerting a force f. Each half of the cable is displaced through a small angle from the straight line between the ends of the cable. (a) Deduce an expression for the force acting on the car. (b) Evaluate the cable tension for the case where = 7.00 and f = 100 N.arrow_forward
- Two objects, m1 = 3.00 kg and m2 = 8.50 kg, are attached by a massless cord passing over a frictionless pulley as shown in Figure P5.51. Assume the horizontal surface is frictionless. a. Draw a free-body diagram for each of the two objects. b. What is the tension in the cord? c. What is the magnitude of the acceleration of the two objects? FIGURE P5.51 Problems 51 and 65.arrow_forwardAn object experiences no acceleration. Which of the following cannot be true for the object? (a) A single force acts on the object. (b) No forces act on the object. (c) Forces act on the object, but the forces cancel.arrow_forwardA nurse pushes a cart by exerting a force on the handle at a downward angle 35.0° below the horizontal. The loaded cart has a mass of 28.0 kg, and the force of friction is 60.0 N. (a) Draw a free-body diagram for the system of interest. (b) What force must the nurse exert to move at a constant velocity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY