University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.27E
A ball is hanging from a long siring that is tied to the ceiling of a train car traveling eastward on horizontal tracks. An observer inside the train car sees the ball hang motionless. Draw a clearly labeled free-body diagram for the ball if (a) the train has a uniform velocity and (b) the train is speeding up uniformly. Is the net force on the ball zero in either case? Explain.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule06:11
Students have asked these similar questions
A car is accelerating with constant acceleration A. Block of mass mị is
moving to the right as block of mass mą is moving to the left relative to the
car as shown in the Figure. Find the acceleration of block of m1 relative to the
car. The coefficients of kinetic friction between the blocks and block of mass
m2 and the car are the same and given by µ (The pulley is massless and g is
the gravitational acceleration.).
A
m,
m2
Two friends are sitting in a stationary canoe. At t = 3.0 s the person at the front tosses a sack to the person in the rear, who catches the sack 0.2 s later. Which plot given shows the velocity of the boat as a function of time? Positive velocity is forward, negative velocity is backward. Neglect any drag force on the canoe from the water.
Two blocks are connected via a pulley, both blocks have a mass of 10.kg. One block rests on a horizontal surface and the other one hangs freely by a cord which passes over a pulley. Assume the cord does not stretch, ignore mass of pulley and cord, therefore acceleration is the same for both blocks and tension is the same for both blocks. The hanging block moves down so the block lying on the horizontal surface moves to the right.
e. A jewelry box is placed on the dashboard of a car and slides forward when the car decelerates from 20m/s to rest in 4.0 seconds, but not if the deceleration is a little bit longer. Find the coefficient of static friction between the box and the dashboard.
Chapter 4 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 4.1 - Figure 4.5 shows a force F acting on a crate. With...Ch. 4.2 - In which of the following situations is there zero...Ch. 4.3 - Rank the following situations in order of the...Ch. 4.4 - Prob. 4.4TYUCh. 4.5 - You are driving a car on a country road when a...Ch. 4 - Can a body be in equilibrium when only one force...Ch. 4 - A ball thrown straight up has zero velocity at its...Ch. 4 - A helium balloon hovers in midair, neither...Ch. 4 - When you fly in an airplane at night in smooth...Ch. 4 - If the two ends of a rope in equilibrium are...
Ch. 4 - You tie a brick lo the end of a rope and whirl the...Ch. 4 - When a car stops suddenly, the passengers tend to...Ch. 4 - Some people say that the force of inertia (or...Ch. 4 - A passenger in a moving bus with no windows...Ch. 4 - Suppose you chose the fundamental physical...Ch. 4 - Why is the earth only approximately an inertial...Ch. 4 - Does Newtons second law hold true for an observer...Ch. 4 - Some students refer to the quantity ma as the...Ch. 4 - The acceleration of a falling body is measured in...Ch. 4 - You can play catch with a softball in a bus moving...Ch. 4 - Students sometimes say that the force of gravity...Ch. 4 - Why can it hurt your foot more to kick a big rock...Ch. 4 - Its not the fall that hurts you; its the sudden...Ch. 4 - A person can dive into water from a height of 10 m...Ch. 4 - Why are cars designed to crumple in front and back...Ch. 4 - When a string barely strong enough lifts a heavy...Ch. 4 - A large crate is suspended from the end of a...Ch. 4 - Which feels a greater pull due to the earths...Ch. 4 - Why is it incorrect to say that 1.0 kg equals 2.2...Ch. 4 - A horse is hitched to a wagon. Since the wagon...Ch. 4 - True or false? You exert a push P on an object and...Ch. 4 - A large truck and a small compact car have a...Ch. 4 - When a car comes to a stop on a level highway,...Ch. 4 - A small compact car is pushing a large van that...Ch. 4 - Consider a tug-of-war between two people who pull...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A manual for student pilots contains this passage:...Ch. 4 - If your hands are wet and no towel is handy, you...Ch. 4 - If you squat down (such as when you examine the...Ch. 4 - When a car is hit from behind, the occupants may...Ch. 4 - In a head-on auto collision, passengers who are...Ch. 4 - In a head-on collision between a compact 1000-kg...Ch. 4 - Suppose you are in a rocket with no windows,...Ch. 4 - Two dogs pull horizontally on ropes attached to a...Ch. 4 - To extricate an SUV stuck in the mud, workmen use...Ch. 4 - BIO Jaw Injury. Due to a jaw injury, a patient...Ch. 4 - A man is dragging a trunk up the loading ramp of a...Ch. 4 - Forces F1 and F2act at a point. The magnitude of...Ch. 4 - An electron (mass = 9.11 1031 kg) leaves one end...Ch. 4 - A 68.5-kg skater moving initially at 2.40 m/s on...Ch. 4 - You walk into an elevator, step onto a scale, and...Ch. 4 - A box rests on a frozen pond, which serves as a...Ch. 4 - A dockworker applies a constant horizontal force...Ch. 4 - A hockey puck with mass 0.160 kg is at rest at the...Ch. 4 - A crate with mass 32.5 kg initially at rest on a...Ch. 4 - A 4.50-kg experimental cart undergoes an...Ch. 4 - A 2.75-kg cat moves in a straight line (the...Ch. 4 - A small 8.00-kg rocket burns fuel that exerts a...Ch. 4 - An astronauts pack weighs 17.5 N when she is on...Ch. 4 - Superman throws a 2400-N boulder at an adversary....Ch. 4 - BIO (a) An ordinary flea has a mass of 210 g. How...Ch. 4 - At the surface of Jupiters moon Io, the...Ch. 4 - A small car of mass 380 kg is pushing a large...Ch. 4 - BIO World-class sprinters can accelerate out of...Ch. 4 - The upward normal force exerted by the floor is...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A student of mass 45 kg jumps off a high diving...Ch. 4 - Section 4.6 Free-Body Diagrams 4.25Crates A and B...Ch. 4 - You pull horizontally on block B in Fig. F4.26,...Ch. 4 - A ball is hanging from a long siring that is tied...Ch. 4 - CP A .22-caliber rifle bullet traveling at 350 m/s...Ch. 4 - A chair of mass 12.0 kg is sitting on the...Ch. 4 - A large box containing your new computer sits on...Ch. 4 - CP A 5.60-kg bucket of water is accelerated upward...Ch. 4 - CP You have just landed on Planet X. You release a...Ch. 4 - Two adults and a child want to push a wheeled cart...Ch. 4 - CP An oil tankers engines have broken down, and...Ch. 4 - CP BIO A Standing Vertical Jump. Basketball player...Ch. 4 - CP An advertisement claims that a particular...Ch. 4 - BIO Human Biomechanics. The fastest pitched...Ch. 4 - BIO Human Biomechanics. The fastest served tennis...Ch. 4 - Two crates, one with mass 4.00 kg and the other...Ch. 4 - CP Two blocks connected by a light horizontal rope...Ch. 4 - CALC To study damage to aircraft that collide with...Ch. 4 - CP A 6.50-kg instrument is hanging by a vertical...Ch. 4 - BIO Insect Dynamics. The froghopper (Philaenus...Ch. 4 - A loaded elevator with very worn cables has a...Ch. 4 - CP After an annual checkup, you leave your...Ch. 4 - CP A nail in a pine board stops a 4.9-N hammer...Ch. 4 - CP Jumping to the Ground. A 75.0-kg man steps off...Ch. 4 - The two blocks in Fig. P4.48 are connected by a...Ch. 4 - CP Boxes A and B are connected to each end of a...Ch. 4 - CP Extraterrestrial Physics. You have landed on an...Ch. 4 - CP CALC A mysterious rocket-propelled object of...Ch. 4 - CALC The position of a training helicopter (weight...Ch. 4 - DATA The table gives automobile performance data...Ch. 4 - DATA An 8.00-kg box sits on a level floor. You...Ch. 4 - DATA You are a Starfleet captain going boldly...Ch. 4 - Prob. 4.56CPCh. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCERS BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - The forces on a dancer can be measured directly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q8. Perform the calculation to the correct number of significant figures.
a) 0.121
b) 0.12
c) 0.12131
d) 0.121...
Chemistry: A Molecular Approach (4th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
103. What solution can you add to each cation mixture to precipitate one cation while keeping the other cation ...
Introductory Chemistry (6th Edition)
EVOLUTION CONNECTION The percentages of naturally occurring elements making up the human body (see Table 2.1) a...
Campbell Biology (11th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. A ball with a mass of 10 kg is hanging from a long string that is tied to the ceiling of a train car traveling eastward on horizontal tracks. An observer inside the train car sees the ball hang motionless. Draw a clearly labeled free-body diagram for the ball if (a) the train has a uniform velocity, and (b) the train is speeding up uniformly. (c) Is the net force on the ball zero in either case? Explain. (d) If the train stops from 60 km/h velocity within 5 s, draw a clearly labeled free-body diagram for the ball and compute for the tensional force on the string (assumes that the string didn't break).arrow_forwardi need it in 15 minutes hand written answerarrow_forwardSolve b and carrow_forward
- a. A particle of mass m accelerates from rest down a rough inclined plane, inclined at an angle 0 with respect to the horizontal and whose coefficient of friction is u. Apply Newton's laws in Cartesian coordinates to determine how far the particle will travel in time t. b. A particle of mass m is released on the side of a semicircular track that points downward. The radius of the semicircular track is R. Using Newton's second law in polar coordinates, determine how long it will take the particle to come back to the point of releasearrow_forwardA 15.0N force pushes a piece of brass to the right. It took 4.0 seconds for the piece of brass to slide 35.0 meters horizontally on a steel surface at a starting velocity of 5.0 m/s. The coefficient of kinetic friction between the brass and steel is 0.37. a). Draw the free-body diagram of the piece of brass.b). What is the acceleration of the piece of brass within the given time frame?c). What is the mass of the piece of brass?arrow_forwardA cyclist is coasting at 18 m/s when she starts on a 450 m long slope that is 40 m high. The cyclist and her bicycle have a combined mass of 75 kg. A steady 15 N drag force due to air resistance acts on her as she coast all the way down to the bottom. a) Draw a useful picture depicting this situation. Clearly label all lengths and relevant vector quantities (velocity, force). b) How much enercy does the cyclist have at the top of the slope? c) How much work does the drag on the cyclist as she goes down the slope? Clearly indicate sign of work. d) What is the cyclist's speed at the bottom of the slope?arrow_forward
- Question 1. a) Consider a uniform force field where the force acting on a body has the same magnitude everywhere, pointing in the same direction (along the y-axis). Derive the formulae for the range and height of a body launched with velocity v at an angle 0 to the x-axis. b) Give two different examples where you might find such a uniform force field. What is the acceleration on the body in each example? c) Consider a projectile launched on the surface of the Earth. How fast does its initial velocity need to be before the assumption of a uniform force field in part a) becomes invalid? (Assume a launch angle of 45°). Explain your answer. (Hint: you will probably need to account for the horizon on Earth).arrow_forwardA block with mass of m1=2 kg is placed on top of a block with a mass m2=4kg. A horizontal force F=60N is applied to the block m2 is tied to the wall. The coefficient of kinetic friction between all surfaces is 0.4. Draw a free-body diagram for each block and identify the action-reaction forces between the blocks. Determine the tension in the siring and the magnitude of the acceleration of the block m2.(g=9.8 m/s^2)arrow_forwardA 7 kg block is resting on a horizontal tabletop. A 3 kg block is on top of the 7 kg block. An applied force of 12 N is exerted straight downward on the top block. Draw the free-body diagrams on each block and find (a) the magnitude of the normal force on the 3 kg block from the 7 kg block, and (b) the magnitude of the normal force on the 7 kg block from the table.arrow_forward
- Superman must stop a 105-km/h train in 100 m to keep it from hitting a stalled car on the tracks. The train's mass is 3.6 × 105 kg. A.) Determine the force that must be exerted on the train. Express your answer to two significant figures and include the appropriate units. Enter positive value if the direction of the force is in the direction of the initial velocity and negative value if the direction of the force is in the direction opposite to the initial velocity. FTS =_____________________ ______________________ B.) Compare the magnitudes of the force exerted on the train and the weight of the train (give as %%). Express your answer using two significant figures. FTS/mg = _______________________% C.) How much force does the train exert on Superman? Express your answer to two significant figures and include the appropriate units. Enter positive value if the direction of the force is in the direction of the initial velocity and negative value if the direction of the force is…arrow_forwardSand falls from a stationary hopper onto a freight car that is moving with uniform velocity v. The sand falls at the rate dm/dt. How much force is needed to keep the freight car moving at the speed v?arrow_forwardA 15.0-N force pushes a piece of brass to the right. It took 4.0 seconds for the piece of brass to slide 35.0 meters horizontally on a steel surface at a starting velocity of 5.0 m/s. The coefficient of kinetic friction between the brass and steel is 0.37. (a) Draw the free-body diagram of the piece of brass. (b) What is the acceleration of the piece of brass within the given time frame? (Ans: 1.88 m/s) (c) What is the mass of the piece of brass? (Ans: 2.73 kg)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License