EBK FOUNDATIONS OF COLLEGE CHEMISTRY
15th Edition
ISBN: 9781118930144
Author: Willard
Publisher: JOHN WILEY+SONS INC.
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 15RQ
Interpretation Introduction
Interpretation:
The reason why combustion of fossil fuels is not the best solution to the planet’s need has to be given and the alternative energy source that are important in future has to be given.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
what is the step by step/ brief explanation of direct combustion for converting biomass to useful energy(bioenergy)?
Explain limited energy resources that caused by fossil fuel
Between ethanol and biodiesel, which one is better to use? What are the advantages and disadvantages of using them?
Chapter 4 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
Ch. 4.1 - Prob. 4.1PCh. 4.2 - Prob. 4.2PCh. 4.5 - Prob. 4.3PCh. 4.5 - Prob. 4.4PCh. 4.5 - Prob. 4.5PCh. 4 - Prob. 1RQCh. 4 - Prob. 2RQCh. 4 - Prob. 3RQCh. 4 - Prob. 4RQCh. 4 - Prob. 5RQ
Ch. 4 - Prob. 6RQCh. 4 - Prob. 7RQCh. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 10RQCh. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 - Prob. 14RQCh. 4 - Prob. 15RQCh. 4 - Prob. 1PECh. 4 - Prob. 2PECh. 4 - Prob. 3PECh. 4 - Prob. 4PECh. 4 - Prob. 5PECh. 4 - Prob. 6PECh. 4 - Prob. 7PECh. 4 - Prob. 8PECh. 4 - Prob. 9PECh. 4 - Prob. 10PECh. 4 - Prob. 11PECh. 4 - Prob. 12PECh. 4 - Prob. 13PECh. 4 - Prob. 14PECh. 4 - Prob. 15PECh. 4 - Prob. 16PECh. 4 - Prob. 17PECh. 4 - Prob. 18PECh. 4 - Prob. 19PECh. 4 - Prob. 20PECh. 4 - Prob. 21PECh. 4 - Prob. 22PECh. 4 - Prob. 23AECh. 4 - Prob. 24AECh. 4 - Prob. 25AECh. 4 - Prob. 26AECh. 4 - Prob. 27AECh. 4 - Prob. 28AECh. 4 - Prob. 29AECh. 4 - Prob. 30AECh. 4 - Prob. 31AECh. 4 - Prob. 32AECh. 4 - Prob. 33AECh. 4 - Prob. 34AECh. 4 - Prob. 35AECh. 4 - Prob. 36AECh. 4 - Prob. 37AECh. 4 - Prob. 38AECh. 4 - Prob. 39AECh. 4 - Prob. 44CECh. 4 - Prob. 45CECh. 4 - Prob. 46CE
Knowledge Booster
Similar questions
- 4.60 Why are fuel additives used?arrow_forwardPetroleum is a very valuable raw material for the synthesis of polymers. What if Congress decided that petroleum must be conserved as a raw material and could not be used as fuel? What could our society do for alternate sources of energy?arrow_forwardat if energy were not conserved? How would this affect our lives?arrow_forward
- Water gas, a mixture of carbon monoxide and hydrogen, is produced by treating carbon (in the form of coke or coal) with steam at high temperatures. (See Study Question 83.) C(s) + H2O(g) CO(g) + H2(g) Not all of the carbon available is converted to water gas since some is burned to provide the heat for the endothermic reaction of carbon and water. What mass of carbon must be burned (to CO2 gas) to provide the energy to convert 1.00 kg of carbon to water gas?arrow_forwardThermal Interactions Part 1: In an insulated container, you mix 200. g of water at 80C with 100. g of water at 20C. After mixing, the temperature of the water is 60C. a How much did the temperature of the hot water change? How much did the temperature of the cold water change? Compare the magnitudes (positive values) of these changes. b During the mixing, how did the heat transfer occur: from hot water to cold, or from cold water to hot? c What quantity of heat was transferred from one sample to the other? d How does the quantity of heat transferred to or from the hot-water sample compare with the quantity of heat transferred to or from the cold-water sample? e Knowing these relative quantities of heat, why is the temperature change of the cold water greater than the magnitude of the temperature change of the hot water. f A sample of hot water is mixed with a sample of cold water that has twice its mass. Predict the temperature change of each of the samples. g You mix two samples of water, and one increases by 20C, while the other drops by 60C. Which of the samples has less mass? How do the masses of the two water samples compare? h A 7-g sample of hot water is mixed with a 3-g sample of cold water. How do the temperature changes of the two water samples compare? Part 2: A sample of water is heated from 10C to 50C. Can you calculate the amount of heat added to the water sample that caused this temperature change? If not, what information do you need to perform this calculation? Part 3: Two samples of water are heated from 20C to 60C. One of the samples requires twice as much heat to bring about this temperature change as the other. How do the masses of the two water samples compare? Explain your reasoning.arrow_forwardEnthalpy a A 100.-g sample of water is placed in an insulated container and allowed to come to room temperature at 21C. To heat the water sample to 41C, how much heat must you add to it? b Consider the hypothetical reaction,2X(aq)+Y(l)X2Y(aq)being run in an insulated container that contains 100. g of solution. If the temperature of the solution changes from 21C to 31C, how much heat does the chemical reaction produce? How does this answer compare with that in part a? (You can assume that this solution is so dilute that it has the same heat capacity as pure water.) c If you wanted the temperature of 100. g of this solution to increase from 21C to 51C, how much heat would you have to add to it? (Try to answer this question without using a formula.) d If you had added 0.02 mol of X and 0.01 mol of Y to form the solution in part b, how many moles of X and Y would you need to bring about the temperature change described in part c. e Judging on the basis of your answers so far, what is the enthalpy of the reaction 2X(aq) + Y(l) X2Y(aq)?arrow_forward
- The equation for the combustion of 2 mol of butane can be written 2C4H10(g)+O2(g)8CO2(g)+10H2O(g);HO Which of the following produces the least heat? a Burning 1 mol of butane. b Reacting 1 mol of oxygen with excess butane. c Burning enough butane to produce 1 mol of carbon dioxide. d Burning enough butane to produce 1 mol of water. e All of the above reactions (a, b, c, and d) produce the same amount of heat.arrow_forwardA piece of chocolate cake contains about 400 calories. A nutritional calorie is equal to 1000 calories (thermochemical calories), which is equal to 4.184 kJ. How many 8-in-high steps must a 180-lb man climb to expend the 400 Cal from the piece of cake? See Exercise 28 for the formula for potential energy.arrow_forwardCalculating Energy Use in Kilowatt-Hours What is the yearly cost of operating a 100-W television for 2 hours per day, assuming the cost of electricity is 15 cents per kilowatt-hour?arrow_forward
- Swimming Pool A swimming pool measuring 20.0m12.5m is filled with water to a depth of 3.75m. If the initial temperature is 18.4°C, how much heatmust be added to the water to raise its temperature to29.0°C? Assume that the density of water is 1.000 g/mL.arrow_forwardThe equation for the fermentation of glucose to alcohol and carbon dioxide is: C6H12O6(aq) 2C2H5OH(aq) + 2CO2(g) The enthalpy change for the reaction is 67 kJ. Is this reaction exothermic or endothermic? Is energy, in the form of heat, absorbed or evolved as the reaction occurs?arrow_forwardHydrogen is an ideal fuel in many respects; for example, the product of its combustion, water, is nonpolluting. The heat given off in burning hydrogen to gaseous water is 5.16 104 Btu per pound. What is this heat energy in joules per gram? (1 Btu = 252 cal; see also Table 1.4.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning