Integrated Science
Integrated Science
7th Edition
ISBN: 9780077862602
Author: Tillery, Bill W.
Publisher: Mcgraw-hill,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 12CQ

The relative humidity increases almost every evening after sunset. Explain how this is possible if no additional water vapor is added to or removed from the air.

Blurred answer
Students have asked these similar questions
When night falls, the temperature of the earth’s surface starts to drop. On a cool night, dew starts to form on the grass as water vapor condenses. Once dew starts to form, the rate of temperature decrease slows. Explain why this change occurs.
In Miami, Florida, which has a very humid climate and numerous bodies of water nearby, it is unusual for temperatures to rise above about 38°C (100°F). In the desert climate of Phoenix, Arizona, however, temperatures rise above that almost every day in July and August. Explain how the evaporation of water helps limit high temperatures in humid climates.
The temperature of the ocean off the coast of New Jersey ranges from about 3 °C in late winter to about 24 °C in late summer. If we assume that the ocean temperature is representative of a layer that is 25 m deep and the only exchange of energy is at the ocean surface, what is the average energy flux at ocean surface that would be required to account for this temperature change?
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781938168000
    Author:Paul Peter Urone, Roger Hinrichs
    Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY