Concept explainers
The figure shown here is a representation of 50 atoms of a fictitious element with the symbol Nt and
a. Assuming that the figure is statistically representative of naturally occurring Nt, what is the percent natural
b. Use the listed masses of each isotope to calculate the
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Introductory Chemistry (6th Edition)
- Reference Section 5-2 to find the atomic masses of 12C and 13C, the relative abundance of 12C and 13C in natural carbon, and the average mass (in u) of a carbon atom. If you had a sample of natural carbon containing exactly 10,000 atoms, determine the number of 12C and 13C atoms present. What would be the average mass (in u) and the total mass (in u) of the carbon atoms in this 10,000-atom sample? If you had a sample of natural carbon containing 6.0221 1023 atoms, determine the number of 12C and 13C atoms present What would be the average mass (in u) and the total mass (in u) of this 6.0221 1023 atom sample? Given that 1 g = 6.0221 1023 u, what is the total mass of I mole of natural carbon in units of grams?arrow_forwardThe element silver (Ag) has two naturally occurring isotopes: 109 Ag and 107Ag with a mass of 106.905 u. Silver consists of 51.82% 107Ag and has an average atomic mass of 107.868 u. Calculate the mass of 109Ag.arrow_forwardThe element europium exists in nature as two isotopes: 151Eu has a mass of 150.9196 u and 153Eu has a mass of 152.9209 u. The average atomic mass of europium is 151.96 u. Calculate the relative abundance of the two europium isotopes.arrow_forward
- Indium oxide contains 4.784 g of indium for every 1.000 g of oxygen. In 1869, when Mendeleev first presented his version of the periodic table, he proposed the formula In2O3 for indium oxide. Before that time it was thought that the formula was InO. What values for the atomic mass of indium are obtained using these two formulas? Assume that oxygen has an atomic mass of 16.00.arrow_forwardThe average atomic masses of some elements may vary, depending upon the sources of their ores. Naturally occurring boron consists of two isotopes with accurately known masses ( 10B, 10.0129 amu and 11B, 11.0931 amu). The actual atomic mass of boron can vary from 10.807 to 10.8 19, depending on whether the mineral source is from Turkey or the United States. Calculate the percent abundances leading to the two values of the average atomic masses of boron from these two countries.arrow_forwardAn element consists of 1.40% of an isotope with mass 203.973 u, 24.10% of an isotope with mass 205.9745 u, 22.10% of an isotope with mass 206.9759 u, and 52.40% of an isotope with mass 207.Y766 u. Calculate the average atomic mass, and identify the element.arrow_forward
- There are 1.699 1022 atoms in 1.000 g of chlorine. Assume that chlorine atoms are spheres of radius 0.99 and that they are lined up side by side in a 0.5-g sample. How many miles in length is the line of chlorine atoms in the sample?arrow_forwardAverage atomic masses listed by JUPAC are based on a study of experimental results. Bromine has two isotopes 79Br and 81Br, whose masses (78.9 183 and 80.9 163 amu) and abundances (50.69% and 49.3 1%) were determined in earlier experiments. Calculate the average atomic mass of bromine based on these experiments.arrow_forwardChlorine has two prominent isotopes,37Cl and35Cl . Which is more abundant? How do you know?arrow_forward
- Uranium-235 is the isotope of uranium commonly used in nuclear power plants. How many (a) protons are in its nucleus? (b) neutrons are in its nucleus? (c) electrons are in a uranium atom?arrow_forwardAn element X bas five major isotopes, which are listed below along with their abundances. What is the element? Isotope Percent Natural Abundance Mass (u) 46x 8.00% 45.95232 47x 7.30% 46.951764 48x 73.80% 47.947947 49x 5.50% 48.947841 50x 5.40% 49.944792arrow_forwardAverage Atomic Weight Part 1: Consider the four identical spheres below, each with a mass of 2.00 g. Calculate the average mass of a sphere in this sample. Part 2: Now consider a sample that consists of four spheres, each with a different mass: blue mass is 2.00 g, red mass is 1.75 g, green mass is 3.00 g, and yellow mass is 1.25 g. a Calculate the average mass of a sphere in this sample. b How does the average mass for a sphere in this sample compare with the average mass of the sample that consisted just of the blue spheres? How can such different samples have their averages turn out the way they did? Part 3: Consider two jars. One jar contains 100 blue spheres, and the other jar contains 25 each of red, blue, green, and yellow colors mixed together. a If you were to remove 50 blue spheres from the jar containing just the blue spheres, what would be the total mass of spheres left in the jar? (Note that the masses of the spheres are given in Part 2.) b If you were to remove 50 spheres from the jar containing the mixture (assume you get a representative distribution of colors), what would be the total mass of spheres left in the jar? c In the case of the mixture of spheres, does the average mass of the spheres necessarily represent the mass of an individual sphere in the sample? d If you had 80.0 grams of spheres from the blue sample, how many spheres would you have? e If you had 60.0 grams of spheres from the mixed-color sample, how many spheres would you have? What assumption did you make about your sample when performing this calculation? Part 4: Consider a sample that consists of three green spheres and one blue sphere. The green mass is 3.00 g, and the blue mass is 1.00 g. a Calculate the fractional abundance of each sphere in the sample. b Use the fractional abundance to calculate the average mass of the spheres in this sample. c How are the ideas developed in this Concept Exploration related to the atomic weights of the elements?arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning