Fundamentals of Physics Extended
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

Question
Book Icon
Chapter 38, Problem 81P
To determine

To show:

Electron’s de Broglie wavelength in nanometers is

λ=1.226K

Blurred answer
Students have asked these similar questions
PART A: A metal surface is illuminated with photons with a frequency f=1.5×10^15 Hz. The stopping potential for electrons photoemitted from the surface is 3.6 V. What is the work function of the metal?        Answer= 2.6 eV   PART B: A certain metal has a work function ϕ. What is the maximum photon wavelength that will produce photoemission? Express your answer in terms of ϕ,Planck's constant h, and the speed of light c.        Answer= λ =hc/ϕ   PART C: Electrons emitted from a metal surface with a work function ϕ = 2.8 eV have a corresponding stopping potential of V0 = 3.6 V. If a metal with a work functionϕnew = 2.2 eV is illuminated by the same wavelength of light, what will be the new stopping potential? Express your answer with the appropriate units.   *Please answer Part C*
In a photoelectric experiment it is found that a stopping potential of 1.00 V is needed to stop all the electrons when incident light of wavelength 225 nm is used and 1.5 V is needed for light of wavelength 207 nm. From these data determine Planck's constant. (Enter your answer, in eV s, to at least four significant figures.) 4.2367e-15 X ev s From these data determine the work function (in eV) of the metal. 4.6 X ev
Find the de Broglie wavelength À for an electron moving at a speed of 1.00 × 106 m/s. (Note that this speed is low enough that the classical momentum formula p = mv is still valid.) Recall that the mass of an electron is me = 9.11 × 10-³1 kg, and Planck's constant is h = 6.626 × 10-34 J.s.

Chapter 38 Solutions

Fundamentals of Physics Extended

Ch. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PCh. 38 - Prob. 87PCh. 38 - Prob. 88PCh. 38 - Prob. 89PCh. 38 - Prob. 90P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning