Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
Solutions are available for other sections.
Concept explainers
Question
Chapter 38, Problem
To determine
To find:
the quantities that determine whether electrons are ejected from a metal plate when illuminated from the five given options.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) Calculate the wavelength of light in vacuum that has a frequency of 5.37 x 10¹5 Hz.
nm
(b) What is its wavelength in ethyl alcohol?
nm
(c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts.
eV
(d) Does the energy of the photon change when it enters the ethyl alcohol?
O The energy of the photon changes.
O The energy of the photon does not change.
Explain.
(a) Calculate the wavelength of light in vacuum that has a frequency of 5.06 x 10
18
nm
(b) What is its wavelength in flint glass?
nm
(c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts.
eV
(d) Does the energy of the photon change when it enters the flint glass?
The energy of the photon changes.
The energy of the photon does not change.
Hz.
Explain.
(a) A certain X-ray photon has a wavelength of 18 nm. Calculate the frequency (υ) of this type of radiation. The speed of light, c = 2.998 x 108 m/s
(b) Do you expect the frequency of photon of blue color light to be greater than, less than, or the same as the frequency of this X-ray photon? Explain your reasoning.
Chapter 38 Solutions
Fundamentals of Physics Extended
Ch. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Prob. 5QCh. 38 - Prob. 6QCh. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10Q
Ch. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PCh. 38 - Prob. 87PCh. 38 - Prob. 88PCh. 38 - Prob. 89PCh. 38 - Prob. 90P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) How many minutes does it take a photon to travel from the Sun to the Earth? 8.32 It can be useful to remember that light travels from the Sun to Earth in about 8.32 minutes. min (b) What is the energy in eV of a photon with a wavelength of 628 nm? 1.98 eV (c) What is the wavelength (in m) of a photon with an energy of 1.13 eV? 1.76*10**-6arrow_forwardLight with an intensity of 10−10W/m2 is shone perpendicular to the surface a metal that has one free electron per atom. Distance between atoms approx 2, 6A˚. Based on the notion of light as a wave and the assumption that light evenly distributed over the entire metal surface, (a) how much energy each electrons per second? (b) if the electron binding energy is 4.7eV , how long does the electron collect energy to escape the metal surface?arrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 8.5*10^9Hz. (b) What is its wavelength in glycerine? (The index of refraction of glycerine is 1.473.) (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron voltsarrow_forward
- (a) Calculate the wavelength of light in vacuum that has a frequency of 5.25 x 10¹7 Hz. nm (b) What is its wavelength in ice? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the ice? O The energy of the photon does not change. O The energy of the photon changes.arrow_forwardFind the energy of the following. Express your answers in units of electron volts, noting that 1 eV = 1.60 × 10-¹⁹ J. (a) a photon having a frequency of 7.80 x 1017 Hz eV (b) a photon having a wavelength of 2.00 x 10² nm eVarrow_forwardFind the energy of the following. Express your answers in units of electron volts, noting that 1 ev = 1.60 x 10-19 j. (a) a photon having a frequency of 4.60 x 1017 Hz ev (b) a photon having a wavelength of 5.40 x 102 nm evarrow_forward
- The photoelectric effect can be used in engineering designs for practical applications. For example, infrared goggles used in night-vision applications have materials that give an electrical signal with exposure to the relatively long wavelength of IR light. If the energy needed for signal generation is 6.4 x 10-20 J, what is the minimum wavelength? What is the frequency of light that can be detected? c = 2.998 x 10° m/s h = 6.626 x 10-34 J s s-1 Submit Answer Retry Entire Group No more group attempts remainarrow_forwardThe photoelectric effect can be used in engineering designs for practical applications. For example, infrared goggles used in night-vision applications have materials that give an electrical signal with exposure to the relatively long wavelength of IR light. If the energy needed for signal generation is 7.5 x 10-20 J, what is the minimum wavelength? What is the frequency of light that can be detected? c = 2.998 x 10 m/s h = 6.626 x 10-34 J s marrow_forwardIt takes 492 kJ of energy to remove one mole of electrons from the atoms on the surface of solid gold. What is the speed of the ejected electrons (in m/s), if the incoming light has a wavelength of 200.0 nmarrow_forward
- Find the energy of the following. Express your answers in units of electron volts, noting that 1 eV = 1.60 x 10 19 J. (a) a photon having a frequency of 2.30 x 1017 Hz (b) a photon having a wavelength of 2.50 x 102 nmarrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, where h is Planck's constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2×10-19 J. When sodium is illuminated by monochromatic light of a particular frequency, electrons are emitted with speeds up to 8 x 105 ms-1. a) Calculate the wavelength of the light. b) Calculate the stopping potential.arrow_forwardStatement 1: Light behaves as a stream of discrete particles called photons, each carrying an indivisible packet of energy. Statement 2: A photon is absorbed by pigments such as chlorophylls. Statement 1 is true. Statement 2 is false. Statement 1 is false. Statement 2 is true. Both statements are true. Both statements are false.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON