Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 37, Problem 41P
To determine
The relation between force and distance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Express the moment of inertia of an octahedral AB6 molecule in terms of its bond lengths and the masses of the B atoms. (b) Ca lcu late the rotationa l constant of 32S19F6, for which the S-F bond length is 158 pm.
The force constant of the Cl2 molecule is 323
Nm-1.
Calculate the energy at the zero point of
vibration and if this amount of energy is
converted to translational energy, how fast
would the molecule be moving?
Pls help ASAP. Pls show all work annd circle the final answer.
Chapter 37 Solutions
Physics for Scientists and Engineers
Ch. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10P
Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43P
Knowledge Booster
Similar questions
- please help quickly A molecule in a gas undergoes about 1.0 × 109 collisions in each second. Suppose that (a) every collision is effective in deactivating the molecule rotationally and (b) that one collision in 10 is effective. Calculate the width (in cm-1) of rotational transitions in the molecule.arrow_forwardThe characteristic rotational energy for a diatomic molecule consisting of two idential atoms of mass 14 u (unified mass units) is 3.68 e-4 eV. Calculate the separation distance between the two atoms. Subarrow_forwardif you know that the Rotational spectroscopy for Molecule Br79 F19 gives a series of equal lines by 0.71433 cm-1 . Calculate the value of rotational constant for Bond lengtharrow_forward
- What is the typical rotational frequency frot for a molecule like N2 at room temperature (25 °C)? Assume that d for this molecule is 1 À = 10-10 Take the total mass of an N2 molecule to be mN, m. kg. You will need to account for rotations around two axes (not just one) to find 4.65 x 10-26 the correct frequency. Express frot numerically in hertz, to three significant figures. nν ΑΣφ ? frot Hz IIarrow_forwardIn the methane molecule, CH4, each hydrogen atom is at the corner of a regular tetrahedron with the carbon atom at the center. If one of the C-H is in the direction of A= i-hat + j-hat + k-hat and an adjacent C-H bond is at the direction B= i-hat - j-hat - k-hat results to an angular bond of approximately 109o for a static frozen molecule. However, the molecule we can encounter everyday continuously vibrates and interact with the surrounding causing its bond vector to vary slightly. According to a new spectroscopy analysis, the adjacent bond vectors was found to be A = 0.96i + 0.87j + 0.8k B = 0.94i + -0.98j + -1.07k What is the angle (in degrees) between the bonds based on this new data?arrow_forwardThe bond length in F2 is 1.417 Å, instead of twice theatomic radius of F, which is 1.28 Å. What can account forthe unexpected length of the F_ F bond?arrow_forward
- Hcp structure . Show that the c/a ratio for an ideal hexagonal close- packed structure is (8/3)^1/2 = 1.633 . if c/a is significantly larger than this value , the crystal structure may be thought of as composed of planes of closely packed atoms, the planes being loosely stacked.arrow_forwardA molecule in a gas undergoes about 1.0 × 109 collisions in each second. Suppose that (i) every collision is effective in deactivating the molecule rotationally and (ii) that one collision in 10 is effective. Calculate the width (in hertz) of rotational transitions in the molecule.arrow_forwardN 2 has a molecular weight of 28.02 g/mol a bit larger than that of a Ne atom, 20.18 g/mol. (a) At a particular temperature, Z trans= 1.90 x 10 26 for Ne in a specific container. What is the translational partition function for a N2 molecule in this container at the same temperature? (b) At 100 K, the rotational partition function for N2is found to be 17.39. What would you expect it to be at 500 K?arrow_forward
- Give an example of two polyatomic molecules that have different rotational contributions to internal energy. State the conditions in which the vibrational contribution to internal energy is proportional to the temperature.arrow_forwardA) Calculate the highest linear density (atoms/m) encountered in Vanadium (V)?B) For Vanadium, calculate the planar density value for the (100) plane?Vanadyum has BBC unit cell. Its atomic weigth and density are 50.94 g/mol and 5.8 g/cm3,respectively.arrow_forward(b) Copper crystallises as FCC (face centred cubic). Given that the atomic radius and density of a given copper sample are 1.28 x 1010 m and 8.98 x 10' kg/m' respectively, carry out the following: Calculate the mass of the copper sample. T'ake Avogadro's number, NA = 6.023 x 1023 atoms/mole. (i) (ii) If the interatomic planar spacing, d, in the sample above is 2.96 x 1010 m, determine the angle at which the first Bragg reflection will occur from the (111) plane if x-radiation of wavelength 1.52 x 10-10 m is used for the analysis. (c) Give two uses of pure copper and two commercial applications of copper alloys.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning