Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 37, Problem 14P
To determine
The quantum number and spacing between adjacent energy level.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solid metals can be modeled as a set of uncoupled harmonic oscillators of the same
frequency with energy levels given by
En = ħwn
n = 0, 1, 2,...
where the zero-point energy (the lowest energy state) of each oscillator has been adjusted
to zero for simplicity. In this model, the harmonic oscillators represent the motions of the
metal atoms relative to one another. The frequency of these oscillators is low so that
ħw
= = 224
KB
and the system vibrational partition function is given by
3N
Z
² = la₁ -
(1
1
e-0/T).
(a) If the system contains one mole of atoms, find the average energy (in J) of this system at
T= 172 K. (You can use =
BkB.)
T
(b) What is the absolute entropy (in J/K) for this system? You can use either the Gibbs
expression for S, or the system partition function to make this evaluation (they are
equivalent, as your reading assignment indicates).
(2nx
sin
\1.50.
2nz
Consider the case of a 3-dimensional particle-in-a-box. Given: 4 =
sin(ny) sin
2.00.
What is the energy of the system?
O 6h?/8m
O 4h²/8m
O 3h2/8m
O none are correct
Please asap
Chapter 37 Solutions
Physics for Scientists and Engineers
Ch. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10P
Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43P
Knowledge Booster
Similar questions
- Is it possible to measure energy of 0.75h for a quantum harmonic oscillator? Why? Why not? Explain.arrow_forwardCheck Your Understanding A sodium atom nukes a transition from the first excited state the wound state, emitting a 589.0-nm photon with energy 2.105 eV. If the lifetime of this excited state is 16108s, what is the uncertainty in energy of this state? What is width of the corresponding line?arrow_forwardFigure 1 of 1 > Energy (J) 4. 3. 2- 1- 1,2-1 +. -1 -21 K, + U, +Wt= K, + U, + AE %3D ext |||arrow_forward
- You have the energy matrix for only 4x4 elements. Calculate the expected value of energy (E) using the function 1 1 -fox /2 e -3icut 2 [e heo S 0 0 0 2 E= = 5 0 0 e 0 2 0 0 0 Ther 2 J Al Laxities (E) A8l 2 gidd) dasll Cuaal l o |2 l Jiew /2 Vi *[fi“ e 0:‘ 5arrow_forwardA certain atom remains in an excited state for about 51.7 ns before emitting a 2.15-eV photon and transitioning to the ground state. What is the uncertainty in the frequency of the photon in Hz?arrow_forward6. An electron in hydrogen atom is in initial state Þ(r, 0) = A(2410o + iÞ210 + 421–1 – 2ib211) where wnim are the eigenfunctions of the hydrogen atom a. Determine the constant A b. What is the probability of finding the electron in the first excited state? hw = - n2 c. Write the state Þ(r, t) at time t, using energy eigenvalues as En d. Find the expectation value of L in the state Þ(r,t e. Find the expectation values of Lx and Ly in the state (r, t f. If measurement of Lz led to the value –ħ what will be results of measurement of energy and the square of total orbital momentum immediately afterwards and what are their probabilities?arrow_forward
- A quantum system is described by a wave function (r) being a superposition of two states with different energies E1 and E2: (x) = c191(r)e iEit/h+ c292(x)e¯iE2t/h. where ci = 2icz and the real functions p1(x) and p2(r) have the following properties: vile)dz = ile)dz = 1, "0 = rp(x)T#(x)l& p1(x)92(x)dx% D0. Calculate: 1. Probabilities of measurement of energies E1 and E2 2. Expectation valuc of cnergy (E)arrow_forwardThe energy of a proton is 1.0 MeV below the top of a 6.8-fm-wide energy barrier. What is the probability that the proton will tunnel through the barrier? (1 eV = 1.60 × 10-19 J, mproton = 1.67 × 10-27 kg, ħ = 1.055 × 10-34 J ∙ s, h = 6.626 × 10-34 J ∙ s)arrow_forwardPlease help with modern physicsarrow_forward
- Solving the Schrödinger equation for a particle of energy E 0 Calculate the values of the constants D, C, B, and A if knownCalculate the values of the constants D, C, B, and A if known and 2mE 2m(Vo-E) a =arrow_forward11. A particle is described by the following normalized superposition wavefunction: Y(x)=sin(x)+sin( in (2x)). a va a What is the average kinetic energy? Hint: Kinteic energy operator: ħ² a² 2m ax² Standard integrals: sin(*) sin(2x), a a A) B) C) D) E) 3h² 8ma² h² 2ma² Sh² 8ma Sh² 16ma² h² 8ma² =)dx=0 and [sin (by)dy= y sin(2by) 4b )arrow_forwardThe wavelength of the emitted photon from the hydrogen molecule H2 is 2.30 μm (micrometers) when the vibrational quantum number decreases by one. What is the effective "spring constant" for the H2 molecule in N/m ?What is the "zero point" energy (in eV) of the molecular vibration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning