Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 61PQ
To determine
The distance of the driver from the letters.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thin sheet of transparent material has an index of refraction
of 1.40 and is 15.0 µm thick. When it is inserted in the light
path along one arm of an interferometer, how many fringe
shifts occur in the pattern? Assume the wavelength (in a vac-
uum) of the light used is 600 nm. Hint: The wavelength will
change within the material.
The limit to the eye’s visual acuity is related to diffraction by the pupil.D = 2.85 mmdh = 1.25 m
a. What is the angle between two just-resolvable points of light for a 2.85 mm diameter pupil in radians, assuming an average wavelength of 550 nm?
θmin =
b. Take your result to be the practical limit for the eye. What is the greatest possible distance in km a car can be from you if you can resolve its two headlights, given they are 1.25 m apart?
L=
c. What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye in mm?
da =
The radar system of a navy cruiser transmits at a wavelength of 1.6 cm, from a circular antenna with a diameter of 2.3 m. At a range of 6.2 km, what is the smallest distance that two speedboats can be from each other and still be resolved as two separate objects by the radar system?
Chapter 36 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 36.2 - Prob. 36.1CECh. 36.3 - Prob. 36.2CECh. 36.4 - Prob. 36.3CECh. 36.5 - Prob. 36.4CECh. 36.5 - Prob. 36.5CECh. 36 - Many circular apertures are adjustable, such as...Ch. 36 - Many of the images we regularly look at are...Ch. 36 - The hydrogen line at 1420.4 MHz corresponds to the...Ch. 36 - Prob. 4PQCh. 36 - Estimate the diffraction-limited resolution of the...
Ch. 36 - Prob. 6PQCh. 36 - Prob. 7PQCh. 36 - Prob. 8PQCh. 36 - Prob. 9PQCh. 36 - Prob. 10PQCh. 36 - Prob. 11PQCh. 36 - Prob. 12PQCh. 36 - Prob. 13PQCh. 36 - Prob. 14PQCh. 36 - Prob. 15PQCh. 36 - Prob. 16PQCh. 36 - Prob. 17PQCh. 36 - Prob. 18PQCh. 36 - Prob. 19PQCh. 36 - Prob. 20PQCh. 36 - Prob. 21PQCh. 36 - Prob. 22PQCh. 36 - Prob. 23PQCh. 36 - Prob. 24PQCh. 36 - Light of wavelength 566 nm is incident on a...Ch. 36 - Prob. 26PQCh. 36 - Prob. 27PQCh. 36 - Prob. 28PQCh. 36 - Prob. 29PQCh. 36 - Prob. 30PQCh. 36 - A light source emits a mixture of wavelengths from...Ch. 36 - Prob. 32PQCh. 36 - Prob. 33PQCh. 36 - Prob. 34PQCh. 36 - Prob. 35PQCh. 36 - Prob. 36PQCh. 36 - Prob. 37PQCh. 36 - Prob. 38PQCh. 36 - Prob. 39PQCh. 36 - Prob. 40PQCh. 36 - Prob. 41PQCh. 36 - Prob. 42PQCh. 36 - Prob. 43PQCh. 36 - Prob. 44PQCh. 36 - CASE STUDY Michelsons interferometer played an...Ch. 36 - CASE STUDY Michelsons interferometer played an...Ch. 36 - Prob. 47PQCh. 36 - Prob. 48PQCh. 36 - Problems 49 and 50 are paired. C Optical flats are...Ch. 36 - Optical flats are flat pieces of glass used to...Ch. 36 - Prob. 51PQCh. 36 - Prob. 52PQCh. 36 - Figure P36.53 shows two thin glass plates...Ch. 36 - Viewed from above, a thin film of motor oil with...Ch. 36 - Newtons rings, discovered by Isaac Newton, are an...Ch. 36 - Prob. 56PQCh. 36 - What is the radius of the beam of an argon laser...Ch. 36 - Prob. 58PQCh. 36 - A diffraction grating with 428 rulings per...Ch. 36 - How many rulings must a diffraction grating have...Ch. 36 - Prob. 61PQCh. 36 - White light is incident on a diffraction grating...Ch. 36 - X-rays incident on a crystal with planes of atoms...Ch. 36 - Prob. 64PQCh. 36 - Prob. 65PQCh. 36 - Prob. 66PQCh. 36 - The fringe width b is defined as the distance...Ch. 36 - The fringe width is defined as the distance...Ch. 36 - Prob. 69PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A horizontal laser beam of wavelength 632.8 nm has a circular cross section 2.00 nun in diameter. A rectangular aperture is to lie placed in the center of the beam so that when the light falls perpendicularly on a wall 4.50 m away, the central maximum fills a rectangle 110 mm wide and 6.00 mm high. The dimensions are measured between the minima bracketing the central maximum. Find the required (a) width and (b) height of the aperture. (c) Is the longer dimension of the central bright patch in the diffraction pattern horizontal or vertical? (d) Is the longer dimension of the aperture horizontal or vertical? (e) Explain the relationship between these two rectangles, using a diagram.arrow_forwardA Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardTo save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- Two polarizing sheets P1 and P2 are placed together with their transmission axes oriented at an angle to each other. What is when only 25% of the maximum transmitted light intensity passes through them?arrow_forwardConsider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forwardA light source emits a mixture of wavelengths from 450.0 nm to 600.0 nm. When the light passes through a diffraction grating, two adjacent spectra barely overlap at an angle of 30.0. How many rulings per meter are on the grating?arrow_forward
- When a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardA beam of monochromatic green light is diffracted by a slit of width 0.550 mm. The diffraction pattern forms on a wall 2.06 m beyond the slit. The distance between the positions of zero intensity on both sides of the central bright fringe is 4.10 mm. Calculate the wavelength of the light.arrow_forwardFind the angle for the third-order maximum for 580-nm-wavelength yellow light falling on a difraction grating having 1500 lines per centimeter.arrow_forward
- Show that the distribution of intensity in a double-slit pattern is given by Equation 36.9. Begin by assuming that the total magnitude of the electric field at point P on the screen in Figure 36.4 is the superposition of two waves, with electric field magnitudes E1=E0sintE2=E0sin(t+) The phase angle in in E2 is due to the extra path length traveled by the lower beam in Figure 36.4. Recall from Equation 33.27 that the intensity of light is proportional to the square of the amplitude of the electric field. In addition, the apparent intensity of the pattern is the time-averaged intensity of the electromagnetic wave. You will need to evaluate the integral of the square of the sine function over one period. Refer to Figure 32.5 for an easy way to perform this evaluation. You will also need the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)arrow_forwardThe movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The other end of the rod is anchored so it does not move. As the temperature of the rod changes from 15°C to 25 C , a change of 14 fringes is observed. The light source is a He Ne laser, =632.8 nm . What is the change in length of the metal bar, and what is its thermal expansion coefficient?arrow_forwardA Michelson interferometer is used with red light of wavelength 632.8 nm and is adjusted for a path difference of 20 μm. Determine the angular radius of the (a) first ring observed and (b) the tenth ring observed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY