Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 36, Problem 5PQ
Estimate the diffraction-limited resolution of the radio telescope in Arecibo, Puerto Rico. The radio telescope’s diameter is 305 m, and it operates at a frequency of 300.0 MHz.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A new optical imaging satellite is being designed for the Maritime Domain Awareness mission. The satellite will be placed in a circular orbit at 5000 km altitude and be able to look off of nadir, giving a maximum range to the target of 7000 km. The desired resolution is 3 meters.
Assuming the sensor will operate in the SWIR (λ = 1.5 μm), estimate the required diameter of the primary aperture to achieve the desired resolution at the maximum range. Report answer in meters to two significant digits.
The required aperture diameter is _____ meters.
You wish to study the radio emission from the sun at wavelength 1.70 cm. In order to see details on the sun’s surface no larger than the diameter of the earth, the limit of resolution of the telescope must be 9.00 x 10-5 rad (about 0.005°). Using the Rayleigh criterion, find (a) the minimum diameter your radio telescope must have and (b) the limit of resolution of this telescope at wavelength 21.1 cm.
Estimate the angular resolutions of a radio interferometer with a 50 m baseline, operating at a wavelength of 1 μm.
Chapter 36 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 36.2 - Prob. 36.1CECh. 36.3 - Prob. 36.2CECh. 36.4 - Prob. 36.3CECh. 36.5 - Prob. 36.4CECh. 36.5 - Prob. 36.5CECh. 36 - Many circular apertures are adjustable, such as...Ch. 36 - Many of the images we regularly look at are...Ch. 36 - The hydrogen line at 1420.4 MHz corresponds to the...Ch. 36 - Prob. 4PQCh. 36 - Estimate the diffraction-limited resolution of the...
Ch. 36 - Prob. 6PQCh. 36 - Prob. 7PQCh. 36 - Prob. 8PQCh. 36 - Prob. 9PQCh. 36 - Prob. 10PQCh. 36 - Prob. 11PQCh. 36 - Prob. 12PQCh. 36 - Prob. 13PQCh. 36 - Prob. 14PQCh. 36 - Prob. 15PQCh. 36 - Prob. 16PQCh. 36 - Prob. 17PQCh. 36 - Prob. 18PQCh. 36 - Prob. 19PQCh. 36 - Prob. 20PQCh. 36 - Prob. 21PQCh. 36 - Prob. 22PQCh. 36 - Prob. 23PQCh. 36 - Prob. 24PQCh. 36 - Light of wavelength 566 nm is incident on a...Ch. 36 - Prob. 26PQCh. 36 - Prob. 27PQCh. 36 - Prob. 28PQCh. 36 - Prob. 29PQCh. 36 - Prob. 30PQCh. 36 - A light source emits a mixture of wavelengths from...Ch. 36 - Prob. 32PQCh. 36 - Prob. 33PQCh. 36 - Prob. 34PQCh. 36 - Prob. 35PQCh. 36 - Prob. 36PQCh. 36 - Prob. 37PQCh. 36 - Prob. 38PQCh. 36 - Prob. 39PQCh. 36 - Prob. 40PQCh. 36 - Prob. 41PQCh. 36 - Prob. 42PQCh. 36 - Prob. 43PQCh. 36 - Prob. 44PQCh. 36 - CASE STUDY Michelsons interferometer played an...Ch. 36 - CASE STUDY Michelsons interferometer played an...Ch. 36 - Prob. 47PQCh. 36 - Prob. 48PQCh. 36 - Problems 49 and 50 are paired. C Optical flats are...Ch. 36 - Optical flats are flat pieces of glass used to...Ch. 36 - Prob. 51PQCh. 36 - Prob. 52PQCh. 36 - Figure P36.53 shows two thin glass plates...Ch. 36 - Viewed from above, a thin film of motor oil with...Ch. 36 - Newtons rings, discovered by Isaac Newton, are an...Ch. 36 - Prob. 56PQCh. 36 - What is the radius of the beam of an argon laser...Ch. 36 - Prob. 58PQCh. 36 - A diffraction grating with 428 rulings per...Ch. 36 - How many rulings must a diffraction grating have...Ch. 36 - Prob. 61PQCh. 36 - White light is incident on a diffraction grating...Ch. 36 - X-rays incident on a crystal with planes of atoms...Ch. 36 - Prob. 64PQCh. 36 - Prob. 65PQCh. 36 - Prob. 66PQCh. 36 - The fringe width b is defined as the distance...Ch. 36 - The fringe width is defined as the distance...Ch. 36 - Prob. 69PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The FAST radio telescope in China is currently the largest in the world, with a diameter of 500 meters. It is able to detect radio waves across a wide spectrum, but let's assume it is "tuned" to a frequency of 1 Giga-Hertz (10°cycles per second). What is the angular resolution limit of the FAST telescope at this frequency?arrow_forwardWhat diameter telescope (in m) would you need to observe Olympus Mons (624 km in diameter) from Earth at a wavelength of 550 nm when Mars is 3.35 ✕ 108 km away?arrow_forwardA new optical imaging satellite is being designed for the Maritime Domain Awareness mission. The satellite will be placed in a circular orbit at 5000 km altitude and be able to look off of nadir, giving a maximum range to the target of 7000 km. The desired resolution is 3 meters. What is the satellite's speed? Express answer in km/s to two significant digits.arrow_forward
- Needs Complete typed solution with 100 %. Accuracy.arrow_forwardCalculate the limit of resolution of a telescope objective having a diameter of 200 cm, if it has to detect light of wavelength 500 nm coming from a star.. (a) 610 x 10⁹ rad -9 (b) 305 x 10⁹ rad ma (c) 457.5 x 109 rad (d) 152.5 x 10⁹ radarrow_forwardA telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon. (a) If this is done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular spread of the beam? (b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84×108 m ?arrow_forward
- Radio waves have wavelengths that are typically many centimeters, or even meters. Radio telescopes also tend to have diameters that are much larger than optical telescopes. They are sometimes 25, 50, even 100 m in diameter. In fact, the Arecibo radio telescope in Puerto Rico is about 300 m in diameter. How does the resolution of the Arecibo telescope observing radio waves of wavelength 10 cm compare to that of a 1-m diameter optical telescope observing in green light with a wavelength of 500 nm? Explain why radio telescopes are so large.arrow_forwardThe Atacama Large Millimeter/SubmillimeterArray (ALMA) is designed to operate over the wavelength range λ= 0.3→9.6mm. It will consist of 80 independent 12m telescopes with a maximum baseline of 18km. How large would a single-dish antenna have to be to have the same collecting area as ALMA?arrow_forwardThe large space telescope that has been placed into an Earth orbit has an aperture diameter of 1.4 meters. What angular resolution will this telescope achieve for visible light of wavelength 2 = 6.5 x 10-7 m? Write your answer in "seconds of arc".arrow_forward
- The telescope of a spy satellite is reputed to be able to resolve objects 9 cm apart from an altitude of 180 km above the surface of Earth. 1) What is the diameter, in meters, of the telescope’s aperture, if its resolution is limited only by diffraction effects? Take 550 nm for the wavelength of light.arrow_forwardA spy satellite orbiting 600 km above Earth is supposedly capable of counting individual people in a crowd in visual- wavelength images. Assume that the middle of the visual wavelength band is at 550 nm . Assume an average person has a size of 0.8 m as seen from above. Estimate the minimum telescope diameter that the satellite must carry.arrow_forwardA space-based telescope can achieve a diffraction-limited angular resolution of 0.05" for red light (wavelength 700 nm). What would the resolution of the instrument be in the infrared, at wavelength 3.5 μm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY