Concept explainers
Many circular apertures are adjustable, such as the pupil of your eye or the shutter of a camera. Describe the change in the diffraction pattern as such an aperture decreases in size.
The reason of change in the diffraction pattern in case size of aperture decreases.
Answer to Problem 1PQ
Increase in the aperture size makes the central maximum smaller and decrease in the aperture size makes the central maximum larger.
Explanation of Solution
The diffraction pattern is generated when light pass through the circular aperture and form central bright spot and on both sides consecutive dark bright rings.
Write the equation of the angular radius of the central bright ring.
Here,
From the above equation, we can say that angular radius of the central ring is directly proportional to the wavelength of the light used and inversely proportional to the diameter aperture.
Conclusion:
Therefore, increase in the aperture size makes the central maximum smaller and decrease in the aperture size makes the central maximum larger.
Want to see more full solutions like this?
Chapter 36 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- In a Newton's ring experiment the diameter of the 10th bright ring changes from 1.40cm to 1.27 cm as a liquid is introduced between the lens and the plate. Calculate the index of refraction of the liquid.arrow_forwardA telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the eyepiece and out the objective, and can then be projected onto a satellite or the Moon. a. If this is done with the Mount Wilson telescope, producing a 2.1 m diameter beam of 690 nm light, what is the minimum angular spread, in radians, of the beam? b. Neglecting atmospheric effects, what is the diameter of the spot this beam would make on the Moon, assuming a lunar distance of 3.84×108 m?arrow_forwardOn a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 33.30 relative to its surface, using an x-ray source of unknown wavelength. Additionally, when illuminated with a different x-ray, this time of known.wavelength 0.205 nm, a second-order maximum is detected at 22.20. Determine the spacing between the reflecting planes.. Select one: O a. 0.19nm O b. 1.84nm O c. 0.27nm O d. 0.54nmarrow_forward
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different known wavelength of 0.137 nm, a second-order maximum is detected at 37.3°. Determine a. the spacing between the reflecting planes. b. the unknown wavelength.arrow_forwardIn the figure, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength 0.820 nm makes an angle θ = 62.3˚ with the top face of the crystal. What is the unit cell size a0?arrow_forwardCalculate the numerical aperture of an optical fibre whose core and cladding are made of materials of refractive index 1.6 and 1.5 respectively. Select one: a. 0.2458 b. 55.77 c. 0.55677 d. 0.647852arrow_forward
- let a beam of x rays of wavelength 0.125 nm be incident on an NaCl crystal at angle u 45.0° to the top face of the crystal and a family of reflecting planes. Let the reflecting planes have separation d = 0.252 nm. The crystal is turned through angle f around an axis perpendicular to the plane of the page until these reflecting planes give diffraction maxima. What are the (a) smaller and (b) larger value of f if the crystal is turned clockwise and the (c) smaller and (d) larger value of f if it is turned counterclockwise?arrow_forwardA converging lens with a diameter of 31.0 cm forms an image of a satellite passing overhead. The satellite has two green lights (wavelength 500 nm) spaced 1.04 m apart. If the lights can just be resolved according to the Rayleigh criterion, what is the altitude of the satellite? h = kmarrow_forwardYou are performing research in an x-ray diffraction laboratory. In one of your experiments, you wish to study x-ray diffraction from a crystal of NaCl using x-rays of wavelength 0.136 nm. (a) For how many angles do you expect to detect a diffraction maximum from the crystal if your x-rays are reflecting from the shaded planes as shown? (b) In another experiment, the crystal is rotated so that the reflections of x-rays arise from parallel planes of sodium and chlorine ions. as shown shows portions of these planes containing atoms within the unit cell. Imagine extending these portions outward to form large planes, one with only sodium ions and the other with only chlorine ions. Considering these planes, for how many angles do you expect to detect a diffraction maximum from the crystal using the same x-rays?arrow_forward
- You are working as a demonstration assistant for a physics professor. For an upcoming lecture on diffraction gratings, he wishes to perform a demonstration where he shines a laser pointer at normal incidence onto the recorded surface of a DVD that is laying flat on the demonstration table. (a) He asks you to determine how many additional maxima beyondthe normal reflection (which will be blocked by his hand holding the laser pointer) will be projected onto the ceiling or walls of the room if he uses a laser pointer with a wavelength of 632.8 nm. (b) He also asks you if he can show more maxima by using a laser pointer of another visible color. Thetracks of pits on a DVD are separated by 0.800 μm.arrow_forwardSuppose that you have a reflection diffraction grating with n= 105 lines per millimeter. Light from a sodium lamp passes through the grating and is diffracted onto a distant screen. Two visible lines in the sodium spectrum have wavelengths 498 nm and 569 nm. What is the angular separation Δθ of the first maxima of these spectral lines generated by this diffraction grating? How wide does this grating need to be to allow you to resolve the two lines 589.00 and 589.59 nanometers, which are a well known pair of lines for sodium, in the second order (m=2)?arrow_forwardA plano-convex lens with radius of curvature R = 3.2 m is in contact with a flat plate of glass. A light source and the observer's eye are both close to the normal, as shown in the figure below. The radius of the 51st bright Newton's ring is found to be 9.4 mm. What is the wavelength of the light produced by the source? nm 2//1 Need Help? Read It 8:36 PM 4/11/2021arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill