Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 4P
To determine
The kinetic energy and total energy of electron increases or decreases if electron moves to larger orbit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
So Determine the distance between the electron and proton in an atom if the potential energy ?U of the electron is 15.4 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m)
Determine the distance between the electron and proton in an atom if the potential energy U of the electron is 13.8 ev (electronvolt, 1 eV = 1.6 × 10-19 J). Give your answer in
Angstrom (1 A = 10-10 m).
Answer:
Choose... +
Previous page
q;
An electron and a proton are a distance r = 7.5×〖10〗^(-9) m apart. How much energy is required to increase their distance of separation by a factor of two?
Chapter 36 Solutions
Physics for Scientists and Engineers
Ch. 36 - Prob. 1PCh. 36 - Prob. 2PCh. 36 - Prob. 3PCh. 36 - Prob. 4PCh. 36 - Prob. 5PCh. 36 - Prob. 6PCh. 36 - Prob. 7PCh. 36 - Prob. 8PCh. 36 - Prob. 9PCh. 36 - Prob. 10P
Ch. 36 - Prob. 11PCh. 36 - Prob. 12PCh. 36 - Prob. 13PCh. 36 - Prob. 14PCh. 36 - Prob. 15PCh. 36 - Prob. 16PCh. 36 - Prob. 17PCh. 36 - Prob. 18PCh. 36 - Prob. 19PCh. 36 - Prob. 20PCh. 36 - Prob. 21PCh. 36 - Prob. 22PCh. 36 - Prob. 23PCh. 36 - Prob. 24PCh. 36 - Prob. 25PCh. 36 - Prob. 26PCh. 36 - Prob. 27PCh. 36 - Prob. 28PCh. 36 - Prob. 29PCh. 36 - Prob. 30PCh. 36 - Prob. 31PCh. 36 - Prob. 32PCh. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the difference in energy between the nx=ny=nz=4 state and the state with the next higher energy? What is the percentage change in the energy between the nx=ny=nz=4 state and the state with the next higher energy? (b) Compare these with the difference in energy and the percentage change in the energy between the nx=ny=nz=400 state and the state with the next higher energy.arrow_forwardThe electron of a hydrogen atom is in an orbit with radius of 8.46 Å (1 Å = 10-10 m), according to the Bohr model. Which of the following statements is correct? a) The total energy of the orbit is –13.6 eV, and the kinetic energy is +13.6 eV. b) The total energy of the orbit is –0.85 eV, and the potential energy is –1.70 eV. c) The total energy of the orbit is –0.85 eV, and the potential energy is +1.70 eV. d) The total energy of the orbit is –0.85 eV, and the potential energy is –0.85 eV. e) The total energy of the orbit is –3.40 eV, and the potential energy is –6.80 eV.arrow_forward73 Consider a conduction electron in a cubical crystal of a con- ducting material. Such an electron is free to move throughout the volume of the crystal but cannot escape to the outside. It is trapped in a three-dimensional infinite well. The electron can move in three dimensions, so that its total energy is given by h2 -(n} + n} + n}), E = 8L?m in which n1, n2, and n; are positive integer values. Calculate the en- ergies of the lowest five distinct states for a conduction electron moving in a cubical crystal of edge length L = 0.25 µm.arrow_forward
- Using the Bohr model, calculate the speed of the electron when it is in the first excited state, n = 2. The Bohr radius ₁ 5.29 x 10-11 m. Assume the electron is non-relativistic.arrow_forwardAn electron revolves around the nucleus of an atom in a circular orbit of radius 4.0Å with a speed of 6.0 x 10^6 ms-1. Calculate the linear kinetic energy.arrow_forwardIn Bohr’s model of the hydrogen atom, the electric potential energy of the electron in the L (n=2) shell is _____ eV. (Put negative number in answer.)arrow_forward
- Light of frequency 9.6 x 1014 Hz is incident on a metal surface. The stopping potential for this metal at this frequency is 2.2 V. How much work is required for an electron to escape the surface of this metal? O 3.5 × 10-19 J O 1.6 × 10-19 J O 2.2 × 10:1⁹ J O 3.2 × 10-19 J O 2.8 x 10-19 Jarrow_forward9. For the hydrogen atom, the electron has a total energy of -13.6 eV when potential energy is defined as zero for the electron positioned at infinite. (a) Make a plot of the potential energy of the electron as a function of radial position. (b) Determine the maximum radius that the electron can reach. (c) What is the force on the electron at this radial position? (d) Write an expression and plot a graph of the electron Kinetic Energy as a function of radial position, r. (e) Determine the maximum Kinetic Energy possible for this electron and the position where this maximum is found.arrow_forwardThe "size" of the atom in Rutherford's model is about 1.0 x 10-10 m. (a) Determine the attractive electrostatic force between an electron and a proton separated by this distance. N (b) Determine (in eV) the electrostatic potential energy of the atom. (Assume the electron and proton are again separated by the distance stated above.) evarrow_forward
- An electron for a hydrogen atom absorbed enough energy to move to the third energy level and immediately returned to ground state, emitting the energy it absorbed. A second hydrogen atom had its electron absorb the same amount of energy but, instead of returning directly to ground state, it moved to the second energy level and then to ground state. What can be said of the energy emitted by these two electrons that took different paths?arrow_forwardAn atom has three energy states: -15 eV, -12 eV and -6 eV. If a beam of photons with photons of energy 8 eV is directed at these atoms, which of the following will happen? Some photons will be absorbed and electrons will transition from -15 eV state to -6 eV state. Some electrons will transition from -15 eV to -12 eV reducing the energy of some photons. Some electrons will transition from -12 eV to -6 eV reducing the energy of some photons by one-third. No photon absorption will take place and the number of electrons in each level will stay unchanged.arrow_forwardHow does one answer this question?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning