Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 43AP
To determine
The minimum appropriate pit depth for an Ultraviolet-ray disk.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ch26,P24
Which one of the below statements is wrong?
Select one:
Color dispersion in a dielectric material is an indication of the frequency dependence of its refractive index.
A spherical ball of glass (ng = 1.5), with a radius of 20 cm, is immersed in water (nw = 1.3).
The surface of the ball has a refractive power of 0.01 D.
Fermat’s principle states that the trajectory of a light ray between two points extremizes the total optical path.
A thin coating is applied to a lens to protect against UV light. The coating strongly
reflects light of wavelength 384 nm and strongly transmits light of wavelength 528 nm
(i.e. visible light, near the middle of the visible spectrum.) The index of refraction of the
coating material is 1.58 and the lens is made of a material with index 1.48. Find the
smallest possible thickness for the coating.
Chapter 36 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 36.2 - Which of the following causes the fringes in a...Ch. 36.3 - Using Figure 36.6 as a model, sketch the...Ch. 36.5 - One microscope slide is placed on top of another...Ch. 36 - Two slits are separated by 0.320 mm. A beam of...Ch. 36 - Prob. 2PCh. 36 - A laser beam is incident on two slits with a...Ch. 36 - Prob. 4PCh. 36 - Prob. 5PCh. 36 - Light with wavelength 442 nm passes through a...Ch. 36 - Prob. 7P
Ch. 36 - A student holds a laser that emits light of...Ch. 36 - Coherent light rays of wavelength strike a pair...Ch. 36 - In Figure P36.10 (not to scale), let L = 1.20 m...Ch. 36 - Prob. 11PCh. 36 - Prob. 12PCh. 36 - In the double-slit arrangement of Figure P36.13, d...Ch. 36 - Monochromatic light of wavelength is incident on...Ch. 36 - Prob. 15PCh. 36 - Show that the distribution of intensity in a...Ch. 36 - Prob. 17PCh. 36 - Monochromatic coherent light of amplitude E0 and...Ch. 36 - Prob. 19PCh. 36 - Prob. 20PCh. 36 - Prob. 21PCh. 36 - Prob. 22PCh. 36 - When a liquid is introduced into the air space...Ch. 36 - Prob. 24PCh. 36 - Prob. 25PCh. 36 - Prob. 26PCh. 36 - Prob. 27PCh. 36 - Prob. 28APCh. 36 - Prob. 29APCh. 36 - Prob. 30APCh. 36 - Prob. 31APCh. 36 - Prob. 32APCh. 36 - In a Youngs double-slit experiment using light of...Ch. 36 - Prob. 34APCh. 36 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 36 - Prob. 36APCh. 36 - In a Newtons-rings experiment, a plano-convex...Ch. 36 - Prob. 38APCh. 36 - A plano-concave lens having index of refraction...Ch. 36 - Prob. 40APCh. 36 - Interference fringes are produced using Lloyds...Ch. 36 - A plano-convex lens has index of refraction n. The...Ch. 36 - Prob. 43APCh. 36 - Prob. 44APCh. 36 - Prob. 45APCh. 36 - Prob. 46CPCh. 36 - Prob. 47CPCh. 36 - Prob. 48CPCh. 36 - Prob. 49CPCh. 36 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The pupil of an eagle's eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 197 m, the eagle sees them as one unresolved object and dives toward them at a speed of 20 m/s. Assume that the eagle's eye detects light that has a wavelength of 550 nm in vacuum. How much time passes until the eagle sees the mice as separate objects? t= iarrow_forwardA spacer is cut from a playing card of thickness 2.82 ✕ 10−4 m and used to separate one end of two rectangular, optically flat, 3.10 cm long glass plates with n = 1.65, as in the figure below. Laser light at 594 nm shines straight down on the top plate. Two plates lie one on top of the other. They touch each other at the right end, and are separated by a small circle at the left end. Three arrows point vertically downward toward the top plate. (a) Count the number of phase reversals for the interfering waves. (b) Calculate the separation (in m) between dark interference bands observed on the top plate. marrow_forwardLight is incident normal to the left side of a TiO2 prism (n = 2.62) in the shape of an equilateral triangle as shown. A thin dielectric film is placed on the top side of the prism. What is the maximum index of refraction that the film may have if the light is to be totally reflected by the thin film-prism interface? Thin film n = 2.62 O A. 1.31 О В. 1.85 Ос. 2.01 O D. 2.27arrow_forward
- You have a tank of ethyl alcohol and shine a laser from within the tank toward the surface. You observe the angle at which the beam no longer transmits out of the ethyl alcohol and into the air to be 55.6 degrees. How fast is the light traveling inside the ethyl alcohol? air ethyl alcohol 1.45 x 10^8 m/s O 1.69 x 10^8 m/s O 2.48 x 10^8 m/s O 3.64 x 10^8 m/s O There is not enough informationarrow_forwardPart (b) Numerically, what is the angle in degrees? θ2= Part (c) Write an expression for the reflection angle ψ, with respect to the surface. ψ = Part (d) Numerically, what is this angle in degrees? ψ =arrow_forwardOften in optics scientists take advantage of effects that require very high intensity light. To get the desired effect a scientist uses a laser with power P = 0.0015 W to reach an intensity of I = 350 W/cm2 by focusing it through a lens of focal length f = 0.15 m. The beam has a radius of r = 0.0011 m when it enters the lens.Randomized VariablesP = 0.0015 WI = 350 W/cm2f = 0.15 mr = 0.0011 m Part (a) Express the radius of the beam, rp, at the point where it reaches the desired intensity in terms of the given quantities. (In other words, what radius does the beam have to have after passing through the lens in order to have the desired intensity?) Part (b) Give an expression for the tangent of the angle that the edge of the beam exits the lens with with respect to the normal to the lens surface, in terms of r and f? Part (c) Express the distance, D, between the lens's focal point and the illuminated object using tan(α) and rp. Part (d) Find the distance, D, in centimeters.arrow_forward
- Which of the following statements are (or could be) true? Choose all that apply. A rock at a temperature of 49 K will not emit EM waves. The index of refraction of a newly discovered transparent material is -1.1. In a vacuum, x-rays move slower than UV rays. Total internal reflection will not occur if the critical angle is greater than the incident angle. A light ray was reflected. The incident angle was 65° and the reflected angle was 65º. If do, then d₁ = 0.arrow_forwardplease helparrow_forwardA beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forward
- A ray of light is incident on an air/water interface. The ray makes an angle of θ1 = 34 degrees with respect to the normal of the surface. The index of the air is n1 = 1 while water is n2 = 1.33. Part (a) Numerically, what is the angle in degrees? θ2 =? Part (b) Write an expression for the reflection angle ψ, with respect to the surface. ψ =? Part (c) Numerically, what is this angle in degrees? ψ =?arrow_forwardThe refractive indices for quartz at 762 nm wavelength for left- and right-circularly polarized light are nL= 1.53920 and nR= 1.53914. (a) What thickness of quartz is required to give an optical rotation of 10⁰ at this wavelength? (b) What is the specific rotation of quartz for this wavelength in degree/mm? NOTE, I do not want you to use Chatgpt for the answer. I asked Chatgpt, and every time the answer provided was wrong.arrow_forwardQ3/A/We wish to coat a glass surface with an appropriate dielectric layer to provide total transmission from air to the glass at a free-space wavelength of 570 nm. The glass has refractive index n3 = 1.45 . Determine the required index for the coating and its minimum thickness.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning