Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 78PQ
Another way to construct a double-slit experiment is to use a Lloyd’s mirror (Fig. P35.78). Light from the single slit strikes the screen and interferes with the light that has reflected from the mirror. Explain why at the center of the fringes there is a dark fringe instead of a bright fringe.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A = 60
B = 70
C = 170
D = 7
35. Figure P36.35 shows a radio-wave transmitter and a receiver
separated by a distance d - 50.0 m and both a distance
A - 35.0 m above the ground. The receiver can receive sig-
nals both directly from the transmitter and indirectly from
signals that reflect from the ground. Assume the ground is
level between the transmitter and receiver and a 180° phase
shift occurs upon reflection. Determine the longest wave-
lengths that interfere (a) constructively and (b) destructively.
Transmitter
Recriver
Figure P36.35 Problems 35 and 36.
In a Young's double-slit experiment, a set of parallel slits with a separation of 0.144 mm is illuminated by light having a wavelength of 596 nm and the interference pattern observed on a screen 4.50 m from the slits.
a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen? ?m
b) What is the difference in path lengths from the two slits to the location of the second dark fringe on the screen, away from the center of the pattern? ?m
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 35.1 - Perhaps Newton never observed a diffraction...Ch. 35.1 - Prob. 35.2CECh. 35.2 - Prob. 35.3CECh. 35.3 - Prob. 35.4CECh. 35.4 - When we studied Youngs double-slit experiment, we...Ch. 35.6 - Prob. 35.6CECh. 35 - Light Is a Wave C As shown in Figure P35.1, spray...Ch. 35 - Sound Wave Interference Revisited Draw two...Ch. 35 - Prob. 3PQCh. 35 - You are seated on a couch equidistant between two...
Ch. 35 - Prob. 5PQCh. 35 - Prob. 6PQCh. 35 - A student shines a red laser pointer with a...Ch. 35 - Monochromatic light is incident on a pair of slits...Ch. 35 - Prob. 9PQCh. 35 - In a Youngs double-slit experiment with microwaves...Ch. 35 - A beam from a helium-neon laser with wavelength...Ch. 35 - Prob. 12PQCh. 35 - Prob. 13PQCh. 35 - Prob. 14PQCh. 35 - Light from a sodium vapor lamp ( = 589 nm) forms...Ch. 35 - Prob. 16PQCh. 35 - Prob. 17PQCh. 35 - Prob. 18PQCh. 35 - Prob. 19PQCh. 35 - Prob. 20PQCh. 35 - Prob. 21PQCh. 35 - Prob. 22PQCh. 35 - Prob. 23PQCh. 35 - Figure P35.24 shows the diffraction patterns...Ch. 35 - Prob. 25PQCh. 35 - Prob. 26PQCh. 35 - A thread must have a uniform thickness of 0.525...Ch. 35 - Prob. 28PQCh. 35 - Prob. 29PQCh. 35 - A radio wave of wavelength 21.5 cm passes through...Ch. 35 - Prob. 31PQCh. 35 - Prob. 32PQCh. 35 - A single slit is illuminated by light consisting...Ch. 35 - Prob. 34PQCh. 35 - Prob. 35PQCh. 35 - Prob. 36PQCh. 35 - Prob. 37PQCh. 35 - Prob. 38PQCh. 35 - Prob. 39PQCh. 35 - Prob. 40PQCh. 35 - Prob. 41PQCh. 35 - Prob. 42PQCh. 35 - Prob. 43PQCh. 35 - Prob. 44PQCh. 35 - Prob. 45PQCh. 35 - Prob. 46PQCh. 35 - Prob. 47PQCh. 35 - Prob. 48PQCh. 35 - Figure P35.49 shows the intensity of the...Ch. 35 - Prob. 50PQCh. 35 - Prob. 51PQCh. 35 - Prob. 52PQCh. 35 - Light of wavelength 750.0 nm passes through a...Ch. 35 - Prob. 54PQCh. 35 - Prob. 55PQCh. 35 - Prob. 56PQCh. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - A Two slits are separated by distance d and each...Ch. 35 - Prob. 60PQCh. 35 - Prob. 61PQCh. 35 - If you spray paint through two slits, what pattern...Ch. 35 - Prob. 63PQCh. 35 - Prob. 64PQCh. 35 - Prob. 65PQCh. 35 - Prob. 66PQCh. 35 - Prob. 67PQCh. 35 - Prob. 68PQCh. 35 - Prob. 69PQCh. 35 - Prob. 70PQCh. 35 - Prob. 71PQCh. 35 - Prob. 72PQCh. 35 - Prob. 73PQCh. 35 - Prob. 74PQCh. 35 - Prob. 75PQCh. 35 - Prob. 76PQCh. 35 - Prob. 77PQCh. 35 - Another way to construct a double-slit experiment...Ch. 35 - Prob. 79PQCh. 35 - Prob. 80PQCh. 35 - Table P35.80 presents data gathered by students...Ch. 35 - Prob. 82PQCh. 35 - Prob. 83PQCh. 35 - Prob. 84PQCh. 35 - Prob. 85PQCh. 35 - Prob. 86PQCh. 35 - Prob. 87PQCh. 35 - Prob. 88PQCh. 35 - A One of the slits in a Youngs double-slit...Ch. 35 - Prob. 90PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Table P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forwardIn Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forwardRed light of wavelength of 700 nm falls on a double slit separated by 400 nm. (a) At what angle is the first-order maximum in the diffraction pattern? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- Figure P35.24 shows the diffraction patterns produced by a slit of varying width. What is the relative width of the slit in each case, from narrowest to widest? FIGURE P35.24 Problems 24 and 32.arrow_forwardThe diffraction phenomenon occurs for all types of waves, including sound waves. A high-frequency sound emitted by a distant source has a wavelength of 9.00 cm and crosses a thin slit a = 12.0 cm wide. A microphone is located at a distance D = 40.0 cm in front of the center of the slot (point O in the figure). The microphone is moved to point P, where the intensity it detects is zero. a) What is the distance d between points O and P? b) How many minima will still be detected if the microphone is moved more than the O point?arrow_forwardas u.. 5. A light source emiis visible light of two wavelengths: 430 nm and 510 nm. The source is used in a double-slit interference experiment in which L = 1.5 m and d = 0.025 mm. Find the separation distance between the third order bright fringes.arrow_forward
- In Figure P37.18, let L = 120 cm and d = 0.250 cm. The slits are illuminated with coherent 600-nm light. Calculate the distance y from the central maximum for which the average intensity on the screen is 75.0% of the maximum.arrow_forwardA double-slit arrangement produces bright interference fringes for sodium light (1 = 647 nm) that are angularly separated by 0.40° near the center of the pattern. What is the angular fringe separation if the entire arrangement is immersed in water, which has an index of refraction of 1.33? Number i Unitsarrow_forwardA light source emits visible light of two wavelengths: λ = 400 nm and λ’ = 500 nm. The source is used ina double-slit interference experiment in which the length between the slits and the screen is L = 1.1 mand the spacing between the two slits is d = 1 mm.a) Find the separation distance between the third-order bright fringes for the twowavelengths. Do not use the small angle approximation. b)What if we examine the entire interference pattern due to the two wavelengths and lookfor overlapping fringes? Are there any locations on the screen where the bright fringes from the twowavelengths overlap exactly?arrow_forward
- Light is sent through a single slit of width w = 0.52 mm. On a screen, which is L = 1.9 m from the slit, the width of the central maximum is D = 5.2 mm. a) The angle of the first dark fringe theta dark. Express sin(theta dark) in terms of the wavelength of the light λ and w. sin(theta dark) = b) Express tan(theta dark) in terms of D and L. c) If D << L, how is tan(theta dark) related to sin(theta dark)? d) Express λ in terms of w, D, and L? e) Solve for the numerical value of λ, in nanometers.arrow_forward** 38. Two plastic plates (index of refraction n = 1.3) are separated by an air gap of 0.9 µm. Analyze the reflections of light of wavelength 600 nm and conclude whether it will be brightly reflected or not. 0.9 um gap ** 39. The air gap in the previous problem is now filled with a mineral oil whose index of refraction is n = 1.5. Analyze the reflections of light of wavelength 600 nm and conclude if it will be brightly reflected or not.arrow_forwardSolar cells are an example of anti-reflective coatings. Let a silicon solar cell (n = 3.45) coated with a layer of silicon dioxide (n = 1.45). Calculate the minimum coating thickness that will minimize the reflection of the light with wavelength of 650 nm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY