Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 59PQ
A Two slits are separated by distance d and each has width w. If d = 2w, how many bright fringes are within the central maximum of the diffraction pattern?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two slits spaced 0.0720 mm apart are 0.800 m
from a screen. Coherent light of wavelength >
passes through the two slits. In their interference
pattern on the screen, the distance from the center
of the central maximum to the first minimum is
3.00 mm. The intensity at the peak of the central
maximum is 0.0300 W/m².
Part A
What is the intensity at point on the screen that is 2.00 mm from the center of the central maximum?
Express your answer with the appropriate units.
НА
?
undo
W
I= 0.03141
m²
Submit Previous Answers Request Answer
x Incorrect; Try Again; 5 attempts remaining
Part B
What is the intensity at point on the screen that is 1.50 mm from the center of the central maximum?
Express your answer with the appropriate units.
?
A
I = Value
Units
J
Write down an expression for the highest order m of diffraction in a double slit experiment if the distance between the slits is a and slits are
illuminated with light of the wavelength A. Please use "*" (without the quotes) for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-
"signs as appropriate. For exponents (e.g. A²) use A*A or A^2 notation: thus A³/B should appear as either A*A*A/B or A^3/B. For greek letters use
"theta" (without the quotes) and for trigonometric functions use "cos", "tan", "sin" (without the quotes). Thus for Acoso use A*ços theta. Please use
the "Display response" button to check you entered the answer you expect.
Answer:
Display response
a In the experiment of double-slit interference of microwaves, if the spacing of the
uble slit is (3 cm) and the wavelength of the microwaves (2.5 cm), find the angles of
the first and second maximums?
b) In the experiment of Fabry-Perrot interferometer of microwaves, if the first distance
between the two partial reflector was (di= 20.7 cm) and we moved the second partial
reflector so the new distance between the partial reflectors is (d 40.2 cm) and we
counted (13) minima's through this distance. Calculate the wavelength of the
microwaves.
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 35.1 - Perhaps Newton never observed a diffraction...Ch. 35.1 - Prob. 35.2CECh. 35.2 - Prob. 35.3CECh. 35.3 - Prob. 35.4CECh. 35.4 - When we studied Youngs double-slit experiment, we...Ch. 35.6 - Prob. 35.6CECh. 35 - Light Is a Wave C As shown in Figure P35.1, spray...Ch. 35 - Sound Wave Interference Revisited Draw two...Ch. 35 - Prob. 3PQCh. 35 - You are seated on a couch equidistant between two...
Ch. 35 - Prob. 5PQCh. 35 - Prob. 6PQCh. 35 - A student shines a red laser pointer with a...Ch. 35 - Monochromatic light is incident on a pair of slits...Ch. 35 - Prob. 9PQCh. 35 - In a Youngs double-slit experiment with microwaves...Ch. 35 - A beam from a helium-neon laser with wavelength...Ch. 35 - Prob. 12PQCh. 35 - Prob. 13PQCh. 35 - Prob. 14PQCh. 35 - Light from a sodium vapor lamp ( = 589 nm) forms...Ch. 35 - Prob. 16PQCh. 35 - Prob. 17PQCh. 35 - Prob. 18PQCh. 35 - Prob. 19PQCh. 35 - Prob. 20PQCh. 35 - Prob. 21PQCh. 35 - Prob. 22PQCh. 35 - Prob. 23PQCh. 35 - Figure P35.24 shows the diffraction patterns...Ch. 35 - Prob. 25PQCh. 35 - Prob. 26PQCh. 35 - A thread must have a uniform thickness of 0.525...Ch. 35 - Prob. 28PQCh. 35 - Prob. 29PQCh. 35 - A radio wave of wavelength 21.5 cm passes through...Ch. 35 - Prob. 31PQCh. 35 - Prob. 32PQCh. 35 - A single slit is illuminated by light consisting...Ch. 35 - Prob. 34PQCh. 35 - Prob. 35PQCh. 35 - Prob. 36PQCh. 35 - Prob. 37PQCh. 35 - Prob. 38PQCh. 35 - Prob. 39PQCh. 35 - Prob. 40PQCh. 35 - Prob. 41PQCh. 35 - Prob. 42PQCh. 35 - Prob. 43PQCh. 35 - Prob. 44PQCh. 35 - Prob. 45PQCh. 35 - Prob. 46PQCh. 35 - Prob. 47PQCh. 35 - Prob. 48PQCh. 35 - Figure P35.49 shows the intensity of the...Ch. 35 - Prob. 50PQCh. 35 - Prob. 51PQCh. 35 - Prob. 52PQCh. 35 - Light of wavelength 750.0 nm passes through a...Ch. 35 - Prob. 54PQCh. 35 - Prob. 55PQCh. 35 - Prob. 56PQCh. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - A Two slits are separated by distance d and each...Ch. 35 - Prob. 60PQCh. 35 - Prob. 61PQCh. 35 - If you spray paint through two slits, what pattern...Ch. 35 - Prob. 63PQCh. 35 - Prob. 64PQCh. 35 - Prob. 65PQCh. 35 - Prob. 66PQCh. 35 - Prob. 67PQCh. 35 - Prob. 68PQCh. 35 - Prob. 69PQCh. 35 - Prob. 70PQCh. 35 - Prob. 71PQCh. 35 - Prob. 72PQCh. 35 - Prob. 73PQCh. 35 - Prob. 74PQCh. 35 - Prob. 75PQCh. 35 - Prob. 76PQCh. 35 - Prob. 77PQCh. 35 - Another way to construct a double-slit experiment...Ch. 35 - Prob. 79PQCh. 35 - Prob. 80PQCh. 35 - Table P35.80 presents data gathered by students...Ch. 35 - Prob. 82PQCh. 35 - Prob. 83PQCh. 35 - Prob. 84PQCh. 35 - Prob. 85PQCh. 35 - Prob. 86PQCh. 35 - Prob. 87PQCh. 35 - Prob. 88PQCh. 35 - A One of the slits in a Youngs double-slit...Ch. 35 - Prob. 90PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the smallest separation between two slits that will produce a second-order maximum for any visible light? (b) For all visible light?arrow_forward(a) Find the angle between the first minima for the two sodium vapor lines, which have wavelengths of 589.1 and 589.6 nm, when they fall upon a single slit of width 2.00 m. (b) What is the distance between these minima if the diffraction pattern falls on a screen 1.00 m from the slit? (c) Discuss the ease or difficulty of measuring such a distance.arrow_forward(a) At what angle is the first minimum for 550-nm light falling on a single slit of width 1.00 m? (b) Will there be a second minimum?arrow_forward
- (a) How wide is a single slit that produces its first minimum for 633-nm light at an angle of 28.0°? (b) At what angle will the second minimum be?arrow_forward(a) Assume that the maxima are halfway between the minima of a single-slit diffraction pattern. The use the diameter and circumference of the phasor diagram, as described in Intensity in Single-Slit Diffraction, to determine the intensities of the third and fourth maxima in terms of the intensity of the central maximum. (b) Do the same calculation, using Equation 4.4. I=I0( sin)2 (4.4)arrow_forwardRed light of wavelength of 700 nm falls on a double slit separated by 400 nm. (a) At what angle is the first-order maximum in the diffraction pattern? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- (a) By differentiating Equation 4.4, show that the higher-order maxima of the single-slit diffraction pattern occur at values of that satisfy tan= . (b) Plot y=tan and y= versus and find the intersections of these two curves. What information do they give you about the locations of the maxima? (c) Convince yourself that these points do not appear exactly =(n+12) , where n=0,1,2,, but are quite close to these values. I=I0( sin)2 (4.4)arrow_forwardMonochromatic light of wavelength 530 nm passes through a horizontal single slit of width 1.5 m in an opaque plate. A screen of dimensions 2.0m2.0m is 1.2 m away from the slit. (a) Which way is the diffraction pattern spread out on the screen? (b) What are the angles of the minima with respect to the center? (c) What are the angles of the maxima? (d) How wide is the central bright fringe on the screen? (e) How wide is the next bright fringe on the screen?arrow_forward(a) Show that a 30,000 line per centimeter grating will not produce a maximum for visible light. (b) What is the longest wavelength for which it does produce a first-order maximum? (c) What is the greatest number of line per centimeter a diffraction grating can have and produce a complete second-order spectrum for visible light?arrow_forward
- A One of the slits in a Youngs double-slit apparatus is wider than the other, so that the amplitude of the light that reaches the central point of the screen from one slit alone is twice that from the other slit alone. Determine the resultant intensity as a function of the direction on the screen, the wavelength of the incident light, the incident intensity I0, and the slit separation d.arrow_forwardA student shines a red laser pointer with a wavelength of 675 nm through a double-slit apparatus in which the two slits are separated by 75.0 m. He observes the diffraction pattern on the wall 1.50 m away. What is the distance between the central bright fringe and either of the neighboring bright fringes on the wall?arrow_forwardAn intensity minimum is found for 450 nm light transmitted through a transparent film (n=1.20) in air. (a) What is minimum thickness of the film? (b) If this wavelength is the longest for which the intensity minimum occurs, what are the next three lower values of ? for which this happens?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY