Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.2, Problem 3E
An object of mass m on a spring of stiffness k oscillates with an amplitude A about its equilibrium position. Suppose that m = 300 g, k = 10 N/m, and A = 10 cm. (a) Find the total energy. (b) Find the mechanical frequency of vibration of the mass. (c) Calculate the change in amplitude when the system loses one quantum of energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A simple harmonic oscillator takes 11.5 s to undergo six complete vibrations.
(a) Find the period of its motion in s.
(b) Find the frequency in hertz.
(c) Find the angular frequency in radians per second.
Q.3.: An oscillatory system is consisting of a mass m of 7.5 kg is attached to the foundation
by a spring of a stiffness k 420 N/m. The system is under frictionless movement over a
horizontal surface. The maximum amplitude of the mass from its equilibrium position is
12 cm. Calculate :-
(a) The period of oscillation.
(b) The maximum speed of the mass.
(c) The maximum acceleration of the mass.
A simple pendulum whose string measures l = 2 m and whose mass is 5 kg is displaced from its equilibrium position.
until it forms an angle θ = π/16 with respect to the vertical and is then released. find:
a) The period of the system.
b) Make a graph of angular position v/s time where the amplitude, initial phase and
system period.
Chapter 3 Solutions
Modern Physics
Ch. 3.2 - Calculate the quantum number, n, for this pendulum...Ch. 3.2 - An object of mass m on a spring of stiffness k...Ch. 3 - Prob. 1QCh. 3 - Prob. 2QCh. 3 - Prob. 3QCh. 3 - Prob. 4QCh. 3 - Prob. 5QCh. 3 - Prob. 6QCh. 3 - Prob. 7QCh. 3 - Prob. 8Q
Ch. 3 - Prob. 9QCh. 3 - Prob. 10QCh. 3 - Prob. 11QCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - As a single crystal is rotated in an x-ray...Ch. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a damped harmonic oscillator. After four cycles the amplitude of the oscillator has dropped to 1/e of its initial value. Find the ratio of the frequency of the damped oscillator to its natural frequency.arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardA simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forward
- A vibration sensor, used in testing a washing machine, consists of a cube of aluminum 1.50 cm on edge mounted on one end of a strip of spring steel (like a hacksaw blade) that lies in a vertical plane. The strips mass is small compared with that of the cube, but the strips length is large compared with the size of the cube. The other end of the strip is clamped to the frame of the washing machine that is not operating. A horizontal force of 1.43 N applied to the cube is required to hold it 2.75 cm away from its equilibrium position. If it is released, what is its frequency of vibration?arrow_forwardShow that, if a driven oscillator is only lightly damped and driven near resonance, the Q of the system is approximately Q2(TotalenergyEnergylossduringoneperiod)arrow_forwardIf the amplitude of a damped oscillator decreases to 1/e of its initial value after n periods, show that the frequency of the oscillator must be approximately [1 − (8π2n2)−1] times the frequency of the corresponding undamped oscillator.arrow_forward
- The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardThe total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forwardConsider an undamped linear oscillator with a natural frequency ω0 = 0.5 rad/s and the step function a = 1 m/s2. Calculate and sketch the response function for an impulse forcing function acting for a time τ = 2π/ω0. Give a physical interpretation of the results.arrow_forward
- In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardA grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forwardObtain the response of a linear oscillator to a step function and to an impulse function (in the limit τ → 0) for overdamping. Sketch the response functions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY